
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727054, IEEE Access

 1



Abstract—Fog computing is a paradigm that extends cloud

computing to the edge of the network. It can provide computation

and storage services to end devices in Internet of Things (IoT).

Attribute-based cryptography is a well-known technology to

guarantee data confidentiality and fine-grained data access

control. However, its computational cost in encryption and

decryption phase is linear with the complexity of policy. In this

paper, we propose a secure and fine-grained data access control

scheme with ciphertext update and computation outsourcing in

fog computing for IoT. The sensitive data of data owner are first

encrypted using attribute-based encryption with multiple policies

and then outsourced to cloud storage. Hence, the user whose

attributes satisfy the access policy can decrypt the ciphertext.

Based on attribute-based signature technique, authorized user

whose attributes integrated in the signature satisfy the update

policy can renew the ciphertext. Specifically, most of encryption,

decryption and signing computations are outsourced from end

devices to fog nodes, thus the computations for data owners to

encrypt, end users to decrypt, re-encrypt and sign are irrelevant

to the number of attributes in the policies. The security analysis

shows that the proposed scheme is secure against known attacks,

and the experimental results show that the fog nodes perform

most of the computation operations of encryption, decryption and

signing, hence the time of encryption for data owner, decryption,

re-encryption and signing for users is small and constant.

Index Terms—Internet of Things, Fog computing, Access

control, Data security, Attribute based encryption, Attribute

based signature

I. INTRODUCTION

OWADAYS, the cloud computing is considered as a

promising computing paradigm, since it can provide

elastic computing resources to users based on the techniques of

distributed computing, virtualization, and so on [1]. However,

the prevalence of the Internet of Things (IoT) applications are

now changing the main factor of computing [2,3]. The

centralized computing systems are starting to suffer from the

unbearable transmission latency and degraded service due to

This work was supported the National Key Research and Development

Program of China under Grant No. 2016YFB0800605, by the National Natural

Science Foundation of China under Grant No. 61572080, the CCF and
Venustech Research Program under Grant No. 2016012.

Q. Huang, Y. Yang, L. Wang are with the Information Security Center, State

Key Laboratory of Networking and Switching Technology, Beijing University
of Posts and Telecommunications, Beijing 100876, China (e-mail:

longsec@bupt.edu.cn; yxyang@bupt.edu.cn; wanglc@bupt.edu.cn).

the extraordinary huge volume traffic between IoT devices and

cloud. Fog computing is a promising technology that takes

advantage of both the paradigms of cloud computing and the

IoT, which has the characteristics of location awareness,

geo-distribution, low latency, mobility support, etc. [4].

Although the great benefits brought by fog computing

paradigm, security problems including data confidentiality and

access control are similar to that in the area of cloud computing

and IoT. Moreover, they are more easily compromised and

low-trustworthy since fog nodes are deployed at the network

edge and much lower cost than cloud servers [5]. One

promising approach to solving such problems is to encrypt data

in advance before the upload. The concept of attribute-based

encryption (ABE) is a one-to-many cryptographic technique

that fulfills these requirements [6]. It features a mechanism that

enables an access control over encrypted data using access

policies and ascribed attributes among private keys and

ciphertexts. Especially, the ciphertext-policy ABE (CP-ABE)

enables data owner to define the access policy over a universe

of attributes that the user needs to possess in order to decrypt

the ciphertext, and enforce it on the data [7]. In this way, the

confidentiality and fine-grained access control of data can be

guaranteed.

However, existing ABE-based solutions mainly focus on

how to afford secure data access for users, few works consider

that there is another requirement that data owner may want to

authenticate some users to update the encrypted data [8]. For

instance, Alice is a data owner and she outsources the encrypted

data to cloud, she hopes that only her several friends who are

regarded as valid users can renew the initial ciphertext. Thus,

the key point of secure ciphertext update is that the user who

renews the ciphertext should be able to prove to the cloud

service provider (CSP) that he is a valid user. The traditional

approach is to sign the modified data, which means CSP must

simultaneously maintain a public key list of valid users to

verify the identities of users. However, it would bring a lot of

extra burden to maintain the key list if existing a large number

of users, and CSP can know the identities of users in this way,

which discloses the user privacy. A novel cryptographic

technique known as attribute-based signature (ABS) is able to

help CSP to verify whether the user is valid [9-11]. In an ABS

system, user can sign messages with a claim policy and his

attributes. Then, with the signature, the CSP can check whether

the signer's attributes satisfy the claim policy while remaining

completely ignorant of the identity of signer. Therefore,

adopting ABE and ABS can achieve data confidentiality,

Secure Data Access Control with Ciphertext

Update and Computation Outsourcing in Fog

Computing for Internet of Things

Qinlong Huang, Yixian Yang, and Licheng Wang

N

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727054, IEEE Access

 2

fine-grained access control and user verification, but it also

brings high computational cost at the same time in fog

computing [12]. The encryption, decryption and signing

operations of ABE and ABS require a large number of module

exponentiations, which commonly grow linearly with the

number of attributes in policies. This presents a significant

challenge for users who access and modify data on

resource-constrained IoT devices with limited computation and

storage capacity.

In this paper, we propose a secure data access control scheme

in fog computing for IoT. The main contributions are as

follows:

1) We propose a fine-grained data access control scheme

with ciphertext update based on CP-ABE and ABS in fog

computing. First, the sensitive data from IoT devices are

encrypted with multiple policies and then outsourced to cloud

servers through nearby fog nodes. The authorized user whose

attributes satisfy the access policy can decrypt the ciphertext

stored in the cloud servers. Second, the authorized user can

modify the decrypted data and re-outsource it again with his

signature. If the user’s attributes in the signature satisfy the

update policy, the cloud servers can renew the ciphertext.

2) We provide a secure outsourcing construction which

outsources most of encryption, decryption and signing

computations from end IoT devices to fog nodes, thus the

computations for data owners to encrypt, end users to decrypt,

re-encrypt and sign are irrelevant to the number of attributes in

the policies.

The experimental results show that fog nodes perform the

heavy computation operations of encryption, decryption and

signing, hence the time of encryption for data owner,

decryption, re-encryption and signing for users is small and

constant. This paper is structured as follows. We review related

work in Section II, introduce the preliminaries and definitions

in Section III, and provide the system model, system definition

and security model in Section IV. The detailed construction of

algorithms is given in Section V, and the security and

performance of our scheme are analyzed in Section VI and VII

respectively. Finally, we conclude this paper in Section VIII.

II. RELATED WORKS

The concept of fog computing is proposed by Cisco in 2014,

which can be regarded as a layer in the middle of the cloud and

end users consisted by fog nodes, such as hardened routers,

switches, and etc. [13]. They are much closer to end users than

cloud servers, and some of the workloads and services taken in

the cloud are moved to the fog nodes. Similar to the cloud

servers, fog nodes are not fully trusted as well, data security

would raise great concerns from users when they store sensitive

data on cloud servers through fog nodes [14]. Thus, a new

access control scheme with cloud, fog and users should be

considered, since the network structures and system models are

different, in which fog nodes should assist user, to make less

computational complexity and more flexibility left for users.

ABE is a promising cryptographic technique to realize

scalable, flexible, and fine-grained access control solutions.

The notion of ABE was first introduced by Sahai and Waters as

a new method for fuzzy identity-based encryption [15,16].

ABE has two variants, key-policy ABE (KP-ABE) [17] and

CP-ABE [18]. Actually, it becomes a powerful mechanism that

can be applied to realize access control in many applications in

IoT [19-22]. Yu et al. [20] introduced the fine-grained data

access control problem in wireless sensor networks for the first

time, and they adopted KP-ABE to protect data. In contrast to

KP-ABE, CP-ABE turns out to be well suited for access control

in IoT due to its expressiveness in describing access policy of

ciphertext. Hu et al. [21] designed a secure data communication

scheme between wearable sensors and data consumers by

employing CP-ABE in wireless body area networks. Jiang et al.

introduced a CP-ABE scheme against key-delegation abuse in

fog computing [22]. Yeh et al. [23] proposed a fine-grained

health information access control framework in the cloud for

lightweight IoT devices.

However, the most significant drawback of ABE for the use

in fog computing is the computational cost in the encryption

and decryption phase which is linear with the complexity of

policy. Fog nodes, the edge of the cloud and closer to end users,

are one of the best choices for the outsourcing proxy [24,25],

which can be used to do massive computations to reduce the

computational overhead required on resource-constrained IoT

devices. The main solution of current schemes is to distribute

calculations of CP-ABE encryption and decryption phase, so

that constrained IoT devices can delegate most of the

consuming operations to nodes of the network [26-31]. Lounis

et al. [28] designed a cloud-based architecture for medical

WSNs, in which sensor nodes outsource the encryption

operations to a trusted gateway that encrypts data based on

CP-ABE before sending to cloud. However, this solution

adopts a full trusted entity to perform data encryption which

does not achieve practical computation outsourcing. Zuo et al.

[29] designed a concrete ABE scheme with outsourced

decryption for fog computing. Yang et al. [30] proposed a

concrete construction with lightweight computational overhead

for health IoT system, in which a semi-trusted computation

center is introduced to enforce most of the heavy calculations in

data encryption phase. Yang et al. [31] proposed two multiple

cloud based ABE schemes for IoT, which enable receivers to

partially outsource computationally expensive decryption

operations to the clouds. However, these schemes only can

support either the outsourced encryption or outsourced

decryption. Zhang et al. proposed an access control scheme for

fog computing, which outsources the heavy computation of

encryption and decryption to fog nodes, thus the computations

for data owners to encrypt and users to decrypt are irrelevant to

the number of attributes in access policy [32].

In order to realize ciphertext update services in fog

computing, the CSP must have the ability to verify the user's

proof before accepting the modified ciphertext. ABS is an

emerging signature algorithm to ensure anonymous user

authentication. It was first introduced by Maji et al. [33], in

order to provide authentication without disclosing the identities

of the users. Based on ABS, Ruj et al. proposed a new

decentralized access control scheme for secure data read and

write in clouds, which supports anonymous user authentication

[11]. In this scheme, the cloud verifies the authenticity without

knowing the user’s identity before storing data. Su et al.

proposed an expressive ABS scheme in IoT [34], which uses an

attribute tree to assurance that only a user with appropriate

attributes satisfying the access policy can endorse the message.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727054, IEEE Access

 3

However, in the existing works of ABS, heavy computational

cost is required during the signing phase, which also grows

linearly with the size of predicate formula. Chen et al. are the

first to present two outsourced ABS schemes in which the

computational overhead at user side is greatly reduced through

outsourcing intensive computations to untrusted CSP [35].

Inspired by this, our scheme realizes anonymous user

authentication in ciphertext update phase and delegates most of

the signing operations to the fog nodes.

III. PRELIMINARIES AND DEFINITIONS

A. Bilinear Map

Let 0 and T be two multiplicative groups of prime order p.

A bilinear map is a function 0 0: Te   with the

following properties:

1) Computability. There is an efficient algorithm to compute

(,) Te g h  , for any 0,g h .

2) Bilinearity. For all 0,g h and , pa b , we have

(,) (,)a b abe g h e g h .

3) Non-degeneracy. If g is a generator of 0 , then (,)e g g is

also a generator of T .

B. Access Tree

Let T denote a tree, a logical representation of an access

policy. Each non-leaf node x represents a threshold gate,

described by its children and a threshold value. Let numx denote

the number of children of a node x, and kx represent its

threshold value. For each leaf node y, we have ky = 1. Let attry

denote an attribute associated with leaf node y in the tree and

parent(z) represent a parent node of the node z in the tree. Each

child node of the node x in the tree is labelled from 1 to numx,

and index(x) returns such label associated with the node x.

These index values are uniquely assigned to nodes in the access

tree for a given key in an arbitrary manner.

Let Tx be a subtree of T rooted at the node x. If a set of

attributes r satisfies the access tree Tx, we denote it as () 1xT r  .

We compute ()xT r recursively as follows. For a non-leaf node x,

it evaluates ()xT r for all children xof node x. For non-leaf node

x, ()xT r returns 1 if and only if at least kx children return 1. For

the leaf node y, it returns 1 if and only if
yattr r .

C. Ciphertext-Policy Attribute-Based Encryption

A CP-ABE system for access policy T consists of the

following four algorithms.

1) Setup (1) : The setup algorithm takes as input the security

parameter and outputs a public key PK and a master secret

key MK.

2) KeyGen(PK, MK, S): The key generation algorithm takes

as input the public key PK, the master secret key MK, a set S of

attributes, and outputs a secret key SK .

3) Enc(PK, M, T): The encryption algorithm takes as input

the public key PK, a message M and an access policy T, and

outputs a ciphertext CT.

4) Dec(PK, SK, CT): The decryption algorithm takes as input

the public key PK, a secret key SK , a ciphertext CT with an

access policy T. If S T , it outputs the message M.

D. Attribute-Based Signature

The ABS scheme consists of four algorithms as follows:

1) Setup (1) . The system setup is the algorithm run by the

attribute authority for which the input is the security parameter

 and the outputs are public key PK and master secret key MK.

2) KeyGen(PK, MK, S). The key generation is the algorithm

run by the attribute authority on inputs public key PK, master

secret key MK and a set of attributes S to generate the secret key

SK for the signer.

3) Sign(PK, M, T, SK). The signing is the algorithm run by a

signer on inputs PK, a message M, a claim policy T and secret

key SK to generate a signature ST for the message.

4) Verify(PK, M, T, ST). The verifying is the algorithm run

by a verifier on inputs PK, a message M, a claim policy T and a

signature ST. The output is true if ST is a valid signature by a

signer whose attributes satisfying T.

IV. SYSTEM MODEL AND SECURITY MODEL

A. System Model

The system model of our proposed scheme consists of

attribute authority, CSP, fog nodes, data owners and users, as

shown in Fig. 1.

Fig. 1. System model

1) Attribute authority. The attribute authority is a fully

trusted party which is in charge of generating system

parameters as well as secret key for each user.

2) CSP. The CSP is a semi-trusted party which provides

high-capacity and online data storage service. It is also

responsible for verifying the signature before accepting the

updated ciphertext.

3) Fog node. The fog nodes are also semi-trusted parties

which are deployed at the network edge and offer a variety of

services. They are in charge of generating part of the ciphertext

and uploading the whole ciphertext to the CSP, and also helping

users to decrypt the ciphertext from the CSP. Moreover, they

assist end users to sign the ciphertext update request.

4) Data owner. The data owner has a great amount of data

from the IoT devices to be uploaded to cloud. It is designed to

define access and update policies to generate the whole

ciphertext with the fog nodes.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727054, IEEE Access

 4

5) User. The user is attached to fog nodes and equipped with

IoT devices such as smart cameras, medical sensors and smart

meters [36]. Since the IoT device has limited computation and

storage ability, it wishes to gain access to the ciphertext stored

in CSP with the help of fog nodes. If the user’s attribute set

satisfies the access policy in the ciphertext, he is able to decrypt

the underlying data. After accessing the data, the user may

make a modification and wish to re-encrypt the data. If the

user’s attribute set satisfies the update policy in the ciphertext,

the CSP will renew the stored ciphertext.

B. System Definition

We define our proposed scheme by describing the following

five phases and nine algorithms.

Phase 1: System setup

1) Setup(1). The attribute authority takes as input security

parameter  , and outputs the system public key PK and master

secret key MK.

Phase 2: Key generation
2) KeyGen(PK, MK, S). The attribute authority takes as input

PK, MK, a set of attributes S, outputs the secret key SK for the

user. And the outsourcing key SK  is sent to fog nodes.

Phase 3: Data encryption

3) Fog.Encrypt(PK, aT). The fog node takes as input PK, an

access policy aT , outputs a partial ciphertext CT  .

4) Owner.Encrypt(PK, M, ,uT CT ). The data owner takes as

input PK, a data M, an update policy uT , a partial ciphertext

CT  , and outputs the ciphertext CT.

Phase 4: Data decryption

5) Fog.Decrypt(PK, CT, SK ). The fog node takes as input

PK, a ciphertext CT and a user’s SK  , and outputs a partial

decrypted ciphertext T if the attributes satisfy access policy aT

in the ciphertext CT.

6) User.Decrypt(T, SK). The user takes as input a partial

decrypted ciphertext T and SK, then recovers the DK and

outputs the plaintext M.

Phase 5: Ciphertext update

7) Fog.Sign(PK, U, uT , SK ). The fog node takes as input

PK, a user’s ciphertext update request U and SK  , update policy

uT . It outputs a partial signature ST  and the global key GK.

8) User.Sign(PK, ST  , SK). The user takes as input PK, a

partial signature ST  and SK, outputs the signature ST.

9) Verify(PK, ST, GK). The CSP takes as input PK, a

signature ST and a global key GK. It outputs true if ST is a valid

signature by the signer whose attributes satisfying uT .

The work flow of our scheme is shown in Fig. 2. At the

initialization phase, attribute authority uses the Setup algorithm

to generate systems parameter. By the KeyGen algorithm,

attribute authority generates secret keys for data owners and

users. In order to achieve high encryption efficiency, the data

owner first encrypts the collected data with a random DK by

applying symmetric encryption algorithm and defines an access

policy and an update policy, the fog node uses the Fog.Encrypt

algorithm to partially encrypt the data with the access policy,

and then data owner uses the Owner.Encrypt algorithm to finish

the encryption with both the access policy and update policy

and stores it to the CSP. When accessing the data, the fog node

first uses the Fog.Decrypt algorithm to partially decrypt the

ciphertext, and then the user can use the User.Decrypt

algorithm to recover the data.

After modifying the data, user also uses the algorithms in the

encryption phase to encrypt the updated data. Before making

the final modification, user uses the User.Sign algorithm to

generate the signature with the partial signature returned from

fog node which runs the Fog.Sign algorithm. Then the CSP

uses the Verify algorithm to verify the signature and finally

accepts the updated ciphertext if the signature is true. In the end,

other users can obtain the updated data with the decryption

algorithms. Therefore, the users with IoT devices can access

and update confidential data in fog computing efficiently.

Fig. 2. Work flow of our scheme

C. Security model

In our scheme, we assume that cloud servers and fog nodes

are honest but curious, which means they execute the tasks and

may collude to get the unauthorized data. Specifically, the

security model covers the following aspects.

1) Data confidentiality. The unauthorized users which are not

the intended receivers defined by data owner should be

prevented from accessing the data.

2) Fine-grained access control. The data owner can custom

expressive and flexible policies so that the data only can be

accessed and updated by the users whose attributes satisfy these

policies.

3) Authentication. If users could not satisfy the update policy

in ciphertexts, it should also be prevented from updating the

ciphertexts.

4) Collusion resistance. Two or more users cannot combine

their secret and outsourcing keys and get access to the data they

cannot access individually.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727054, IEEE Access

 5

V. CONSTRUCTION OF ALGORITHMS

In fog computing, it is the essential requirement to make less

computational complexity, since most of the IoT devices are

resource-constrained. First, we propose fine-grained data

access control and efficient ciphertext update scheme based on

CP-ABE and ABS. The authorized users whose attributes

satisfy the access policy can decrypt the ciphertext, and satisfy

the update policy can renew the ciphertext. Second, we provide

a secure outsourcing construction which outsources most of

encryption, decryption and signing computations from end IoT

devices to fog nodes. The construction details are as follows.

A. System Setup

The attribute authority runs Setup algorithm to select a

bilinear map 0 0: Te   , where 0 and T are two

multiplicative groups with prime order p, and g is the generator

of 0 . Then the attribute authority randomly chooses 0h

and , p   , chooses cryptographic hash functions 1 :H

{0,1} p , 2 0:{0,1}*H  , finally outputs a system

public key (, , , , , (,))PK g h g g h e g g    and a master secret

key (,)MK   .

B. Key Generation

The attribute authority runs KeyGen algorithm to select a

random
p  , which is a unique secret assigned to each user.

Then the attribute authority chooses a random
p  , and

random
jr for each attribute j S , where S is the attribute set of

user, and outputs the secret key and outsourcing key.

()

1 2 1

()

(, ,{ () , })j jr r

j j j S

SK D g

SK D g h D g D g H j D g

  

   





 

     
 (1)

The outsourcing key 1 2(, ,{ , })j j j SSK D D D D 
  of user is

sent to the fog nodes, and the user only stores SK.

C. Data Encryption

Before uploading data to the CSP, data owner first chooses a

random
pDK  , and encrypts the data M with DK using

symmetric encryption algorithm, denoted as ()DKC SE M .

Then data owner defines an access policy aT and an update

policy uT , and sends aT to fog nodes.

The fog nodes run Fog.Encrypt algorithm to perform the

outsourced encryption. For each node x in access policy tree aT ,

the fog nodes choose a polynomial xp . Beginning from the root

node R , the xp is chosen in a top-down manner. For each node

x in the tree, set the degree xd of the polynomial xp to be one

less than the threshold value xk of that node, that is 1x xd k  .

Starting with the root node R , the algorithm chooses a

random
ps and sets (0)Rp s . Then, it chooses Rd other

points of the polynomial Rp randomly to define it completely.

For any other node x , it sets
()(0) (())x parent xp p index x and

chooses xd other points randomly to completely define xp . Let

Y be the set of leaf nodes in aT , the fog nodes output a partial

ciphertext CT  .

3 4

(0) (0)

5 1

(, , ,

{ , () })y y

s s

a

p p

y y y y Y

CT T C g C h

C C g C H attr

 



    

  
 (2)

Finally, the fog nodes return CT  to the data owner. The data

owner runs Owner.Encrypt algorithm to select
pt at

random and computes
1 (,) tC DK e g g   with DK, and

computes
2 3 3 4 4, ,t t tC g C C g C C h       . Finally, the data

owner outputs the ciphertext CT .

1

() ()

2 3 4

(0) (0)

5 1

(, , (), (,) ,

, , ,

{ , () })y y

t

a u DK

t s t s t

p p

y y y y Y

CT T T C SE M C DK e g g

C g C g C h

C C g C H attr



  



   

  

  

 (3)

D. Data Decryption

If attributes of the user satisfy the access policy aT , he can

decrypt CT successfully by running the following decryption

algorithm and obtain the symmetric key DK. Fog nodes run

Fog.Decrypt algorithm to obtain ciphertext from the CSP. The

fog nodes first run DecryptNode algorithm which is a recursive

algorithm. The algorithm takes a ciphertext CT, SK  , and a

node x from the access tree aT as input.

1) If the node x is a leaf node, then we let xz attr and define

as follows. If z S , then

(0)

1

(0)

1

(0)

(,)
(, ,)

(,)

(() , ,)

(, ())

(,)

xz

xz

x

z x

z x

pr

pr

x

p

e D C
DecryptNode CT SK x

e D C

e g H z g

e g H attr

e g g





 
 





 (4)

If z S , then (, ,)DecryptNode CT SK x  .

2) If the node x is a non-leaf node, the algorithm

(, ,)DecryptNode CT SK x proceeds as follows: for all nodes n

that are children of x , it calls (, ,)DecryptNode CT SK n and

stores the output as nF . Let xS be an arbitrary xk -sized set of

child nodes n such that nF  . If no such set exists, then the

node is not satisfied and the function returns⊥. Otherwise,

computes and returns the result.

,

,()

,

(0)

(0)(())

(0)()

(0)

((,))

(,)

(,)

j Sx

x

j Sparent n x

x

j Sx x

x

x

x n

n S

r p index n

n S

r p j

n S

r p

F F

e g g

e g g

e g g





















 



















 (5)

Let ()j index n and { () : }x xS index n n S   . If the access

policy tree aT is satisfied by S, we set the result of entire

evaluation for the access tree aT as F.

(0)
(, ,) (,)

(,)

Rp

s

F DecryptNode CT SK R e g g

e g g





 


 (6)

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727054, IEEE Access

 6

Then, the fog nodes compute

()

()1 3

()

2 4

(,) (,)
(,)

(,) (,)

s t
s t

s t

e D C e g h g
B e g g

e D C e g h

  


 





   (7)

and

 ()(,) (,) = (,)s t s tA B F e g g e g g e g g    (8)

Finally, the fog nodes send a partial ciphertext (, ,a uT T T

1 2(), (,) , , (,))t t t

DKC SE M C DK e g g C g A e g g      to

the user. After receiving T from fog nodes, the user runs the

User.Decrypt algorithm to obtain the symmetric key DK.

 1

()

2

(,) (,)

(,) (,)

t t

t

C A DK e g g e g g
DK

e C D e g g

 

  

  
  (9)

Thus, ()DKSE M can be decrypted with DK by applying the

symmetric decryption algorithm.

E. Ciphertext Update

After modifying the decrypted data, the user re-encrypts the

modified data as described in data encryption phase, then signs

the ciphertext update request with his attributes. Only if the

user’s attributes in the signature satisfy the update policy uT , the

ciphertext will be authorized to be renewed by CSP.

The user sends the request U, and update policy uT to fog

nodes. The fog nodes run Fog.Sign algorithm to perform the

outsourced signing. For each node x in the update policy tree uT ,

the fog nodes choose a polynomial xq . Beginning from the root

node R , the xq is chosen in a top-down manner. For each node

x in the tree, set the degree xd  of the polynomial xq to be one

less than the threshold value xk  of that node, that is 1x xd k   .

Starting with the root node R , the algorithm chooses a random

pr and sets (0)Rq r . Then, it chooses Rd  other points of

the polynomial Rq randomly to define it completely. For any

other node x , it sets
()(0)x parent xq q (())index x and chooses xd 

other points randomly to completely define xq . Let Z be the set

of leaf nodes in uT , the fog nodes output a global key GK .

(0) (0)

1{ , () }z zq q

z z z z ZGK K g K H attr 
   (10)

For each j Z , the fog nodes choose
j pt  randomly and

compute the following with SK  .

1) If j S Z , then computes

()1

1 1

()1

(()) () ,

()

j j j

j j j

t r t rr r

j j

t r t rr

j j

S D H j g H j

S D g g

 



  

   
 (11)

2) If j Z S Z , then computes

1 1

1 1(()) () , ()j j j jt t r t t rr r

j jS H j H j S g g    (12)

Then, the fog nodes select
p  at random and output the

partial signature ST  .

 1 2 2 3(, () , , { , })j j j ZST U S H U S g S S S 


       (13)

Finally, the fog nodes return ST  to the user. Then the user

runs User.Sign algorithm to select
p  at random and

compute
1 1 2 2 2() ,S S H U D S S g       . Finally, the user

outputs the signature ST .

 ()

1 2 2 3(, () , ,)ST U S H U g S g S            (14)

If attributes of the user satisfy the update policy uT stored in

the initial ciphertext, the CSP can verify the signature by

running the Verify algorithm. The CSP first runs VerifyNode

algorithm which can be described as a recursive algorithm. The

algorithm takes a signature ST, GK and a node x from the

update tree uT as input.

1) If the node x is a leaf node, then we let xz attr and define

as follows. If z S Z , then

(0)()

1

(0)()

1

(0)

(,)
(, ,)

(,)

(() , ,)

(, ())

(,)

xz z

xz z

x

z x

z x

qr t rr

qr t r

x

r q

e S K
VerifyNode ST GK x

e S K

e g H z g

e g H attr

e g g












 





 (15)

If z Z S Z , then

(0)

1

(0)

1

(,)
(, ,)

(,)

(() , ,)

(, ())

1

xz

xz

z x

z x

qt r

qt r

x

e S K
VerifyNode ST GK x

e S K

e H z g

e g H attr


 





 (16)

2) If the node x is a non-leaf node, the algorithm

(, ,)VerifyNode ST GK x proceeds as follows: for all nodes n that

are children of x , it calls (, ,)VerifyNode ST GK x and stores the

output as nI . We also let xS be an arbitrary xk -sized set of child

nodes n such that nI  . If no such set exists, then the node is

not satisfied and the function returns⊥. Otherwise, it computes

and returns the result.

,

,()

,

(0)

(0)(())

(0)()

(0)

((,))

(,)

(,)

j Sx

x

j Sparent n x

x

j Sx x

x

x

x n

n S

r q index n

n S

r q j

n S

r q

I I

e g g

e g g

e g g





















 



















 (17)

If the update policy tree uT is satisfied by S, we set the result

of entire evaluation for the update tree uT as I.

(0)
(, ,) (,)

(,)

Rr qI VerifyNode ST GK R e g g

e g g






 


 (18)

Then, the CSP checks the following equation.

()

1 2

2 2 2

(,) (, ())

((),) ((),) (,)

(,)

e g S e g H U g

e H U S I e H U g e g g

e g g

    

  



 






 



 (19)

If this equation holds, then the CSP accepts the signature,

which indicates the CSP will accept the updated ciphertext

from this user whose attributes satisfy the update policy.

Otherwise, the CSP rejects the user’s ciphertext update request.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727054, IEEE Access

 7

VI. SECURITY ANALYSIS

If there exists a probabilistic polynomial time (PPT)

adversary can win our scheme with non-negligible advantage,

then there is a PPT algorithm that can distinguish a decisional

bilinear Diffie-Hellman (DBDH) tuple from a random tuple, as

proofed in [32]. Hence, our scheme is secure to the DBDH

assumption. We analyze the security properties of our scheme

as follows.

A. Data Confidentiality

The data is first encrypted using the access policy and update

policy, and the confidentiality of the data can be guaranteed

against users which don’t hold a set of attributes that satisfy the

access policy. In encryption phase, though the fog node

performs encryption computations for user, it still cannot

access the data without the secret key. During the decryption

phase, since the set of attributes cannot satisfy the access policy

in the ciphertext, the cloud servers or fog nodes cannot recover

the value (,) tA e g g  to further get desired value DK, because

it does not know the D of user. Therefore, only the users with

valid attributes that satisfy the access policy can decrypt the

ciphertext.

B. Fine-Grained Access Control

Fine-grained access control allows flexibility in specifying

differential access rights of individual users. To enforce this

kind of access control, we utilize CP-ABE to escort the

symmetric encryption key. In the encryption phase of our

scheme, the data owner is able to enforce an expressive and

flexible access policy and encrypt the symmetric key which is

used to encrypt the data, then outsource the ciphertext to cloud

servers. Specifically, the access policy of encrypted data

defined in access tree supports complex operations including

both AND and OR gate, which is able to represent any desired

attribute set. Thus, such construction achieves fine-grained

access control.

C. Authentication

Our scheme exploits ABS to achieve ciphertext update with

authentication, even adversary may try to forge a signature with

the update policy that his attributes do not satisfy. Let F be an

adversary who makes at most
1 2
, , ,H H O Kq q q q and Sq queries to

random oracles H1, H2, outsourcing key generation oracle,

secret keys generation oracle and signing oracle respectively,

and produces a successful forgery against our scheme with a

non-negligible probability  . Then there exists an algorithm B

that solves the computational Diffie-Hellman (CDH) problem

with a non-negligible probability
2Hq   [12].

D. Collusion Resistance

The users may intend to combine their secret keys and

outsourcing keys to access the data which they cannot access

individually. In our scheme, attribute authority generates secret

keys for different users, the secret key is associated with

random  , which are uniquely related to each user and make the

combination of components in different secret keys

meaningless. Suppose two or more users with different

attributes combine together to satisfy the access policy, they

cannot compute (,) sF e g g  in the outsourced decryption

phase. Thus, the proposed scheme is collusion-resistant.

VII. PERFORMANCE ANALYSIS

We analyze the efficiency of our proposed scheme in this

section. We will focus on the performance efficiency and

implement experiments to evaluate the performance.

A. Performance Efficiency

Here we analyze the performance efficiency of our scheme

with the several IoT-based and fog-based data sharing schemes

based on ABS or ABE, in terms of computational complexity on

user when performing encryption, decryption and signing. The

comparison result is showed in Table I. Let PT be the

computational cost of a single pairing, 0T be the computational

cost of an exponent operation in 0 , ET be the time for an

exponent operation in T , CN be the number of attributes in a

ciphertext. We ignore the simple multiplication, hash,

symmetric encryption and decryption operations.

In the data encryption phase, since Ruj et al. [11] and Zuo et

al. [29] perform full ABE algorithm on local, their encryption

computational cost of data owner are 03 (2 1)C C EN T N T  and

0(2 1)CN T respectively which both grow linearly with the

number of attributes in access policy. In our scheme, the

constrained IoT device only needs to cost constant time to

encrypt the data with the help of fog nodes, which is similar

with Zhang et al. [32]. However, Zhang et al. [32] cannot

support ciphertext update. The similar situation appears in data

decryption phase. From the end user’s point of view,

computational time in our scheme and Zhang et al. [32] is lower

than that of Ruj et al. [11] since the user only needs one pairing

operation to recover the plaintext. Further, in the ciphertext

update phase, compared with Ruj et al. [11] and Su et al. [34]

which adopt standard ABS to support the update of outsourced

ciphertext. The users in our scheme only need to perform two

exponentiation operation in 0 to sign the ciphertext before

sending to fog nodes. Thus, the signing cost in our scheme is

less than that of Ruj et al. [11] and Su et al. [34] which cost

0(2 2) 2C C EN T N T  and 0(2 2)CN T respectively.

TABLE I

COMPUTATIONAL COMPLEXITY ON DEVICE

Schemes Data encryption
Data

decryption
Ciphertext update

[34] - - 0(2 2)CN T

[11] 03 (2 1)C C EN T N T  2 C PN T 0(2 2) 2C C EN T N T 

[29] 0(2 1)CN T ET -

[32] 03 ET T PT -

Our Scheme 02 2 ET T PT 02T

B. Experimental Analysis

We conduct simulation experiments on a laptop as fog node

and an android phone as IoT device. The laptop is with Intel

CPU at 2.53 GHz, 4 GB memory and Ubuntu 16.04. The

android phone is Samsung G9600V with a quad core processor,

2 GB memory, and Android 6.0.1. The experimental code uses

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727054, IEEE Access

 8

the pairing-based cryptography library [37] to simulate the

schemes. We use a pairing-friendly type-A 160-bit elliptic

curve group based on the supersingular curve 2 3y x x  over a

512-bit finite field. The Advanced Encryption Standard (AES)

is chosen as the symmetric key encryption scheme.

Fig. 3. Comparison of computational overhead for encryption

Fig. 4. Comparison of computational overhead for decryption

Fig. 5. Comparison of computational overhead for signing

The number of attributes used in the experiments is from 5 to

50, and the experimental result is the average number of 10 runs.

We consider this range to be representative enough for a wide

range of real world IoT applications.

First, we analyze the time cost of the data encryption and

decryption by comparing our scheme with Zuo et al. [29] and

Zhang et al. [32]. In data encryption phase, a data owner

encrypts a file with an access policy and an update policy, and

posts the encrypted file to the public cloud through fog nodes.

Fig.3 shows the computational overhead on data owners during

this phase. We can see the encryption time of our scheme and

Zhang et al. [32] is constant since most of the laborious

decryption operations are delegated to the fog nodes, while it

versus the number of attributes in access policy in Zuo et al.

[29]. Fig.4 shows the decryption time on users versus the

number of users’ attributes. Specifically, in Zuo et al. [29],

Zhang et al. [32] and our scheme, the heavy computation

operations of decryption are outsourced to external server, such

as cloud servers and fog nodes, thus the computation operations

for users to decrypt in these schemes are irrelevant to the

number of attributes in the access policy.

The time complexity on users of ciphertext update which

mainly refers to signing algorithms in both our scheme and Su

et al. [34] is given in Fig.5. Concerning on the local

computation performed by the signer, our scheme achieves

much nearly constant performance compared with the linear

increasing efficiency of the scheme of Su et al. [34] by

outsourcing many computations to fog nodes. This advantage

allows our scheme to be applied for the resource-constrained

IoT devices to complete the signing task.

Moreover, we consider that the IoT device has limited

storage ability. Since the outsourcing key can be firstly

generated by attribute authority and then sent to the fog nodes.

Therefore, the user only needs to store a small-sized component

D locally but still maintaining encryption, decryption and

signing capability. We argue that such amount is acceptable for

IoT devices such as Samsung phone used in our experiments.

In summary, the experimental results show that our scheme

incurs less computational cost on the encryption of data owner,

the decryption and signing of user, which ensures both

fine-grained data access control and efficient ciphertext update

in fog computing. Hence, our scheme could be applied to smart

healthcare, vehicular cloud computing, and etc.

VIII. CONCLUSION

In this paper, we propose a secure data access control scheme

in fog computing for IoT based on CP-ABE and ABS. The

sensitive data of users are first encrypted with both access

policy and update policy, and then outsourced to cloud servers

through fog nodes. Thus, the users whose attributes satisfy the

access policy can decrypt the ciphertext. In order to address the

issue of data modification, the CSP will check the signature, to

ensure that only the users whose attributes satisfy the update

policy can renew the ciphertext. Hence, our scheme achieves

both fine-grained data access control and secure ciphertext

update.

Moreover, our scheme presents an outsourced encryption,

decryption and signing construction by delegating most of the

operations to fog nodes. The extensive performance analysis

and experiments are conducted, and the results indicate our

scheme can well tolerate the increasing number of attributes,

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727054, IEEE Access

 9

which is suitable for the resource-constrained IoT devices in

fog computing.

REFERENCES

[1] C. Rong, S.T. Nguyen, and M.G. Jaatun, “Beyond lightning: A survey on

security challenges in cloud computing,” Computers & Electrical Engineering,

vol. 39, no. 1, pp. 47-54, 2013.
[2] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Integration of

agent-based and cloud computing for the smart objects-oriented IoT,” in Proc.

IEEE International Conference on Computer Supported Cooperative Work in
Design, Hsinchu, Taiwan, 2014, pp. 493-498.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things

(IoT): a vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645-1660, 2013.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role

in the Internet of things,” in Proc. First Edition of the MCC Workshop on
Mobile Cloud Computing, Helsinki, Finland, 2012, pp. 13-16.

[5] P. Hu, H. Ning, T. Qiu, H. Song, Y. Wang, and X. Yao. (2017, Jan.).

Security and privacy preservation scheme of face identification and resolution
framework using fog computing in internet of things. IEEE Internet of Things

Journal. [Online]. Available: https://doi.org/10.1109/JIOT. 2017.2659783

[6] Q. Huang, Z. Ma, Y. Yang, J. Fu, and X. Niu, “EABDS: attribute-based
secure data sharing with efficient revocation in cloud computing,” Chinese

Journal of Electronics, vol. 24, no. 4, pp. 862-868, 2015.

[7] Q. Huang, L. Wang, and Y. Yang. (2017, May). DECENT: secure and
fine-grained data access control with policy updating for constrained IoT

devices. World Wide Web Journal. [Online]. Available: https://doi.org/

10.1007/s11280-017-0462-0
[8] X. Dong, J. Yu, Y. Luo, Y. Chen, G. Xue, and M. Li, “Achieving secure and

efficient data collaboration in cloud computing,” in Proc. IEEE/ACM 21st

International Symposium on Quality of Service, Montreal, QC, 2013, pp.
195-200.

[9] F. Zhao, T. Nishide, and K. Sakurai, “Realizing fine-grained and flexible

access control to outsourced data with attribute-based cryptosystems,” in Proc.
Information Security Practice and Experience - 7th International Conference,

Guangzhou, China, 2011, pp. 83-97.

[10] J. Li, M.H. Au, W. Susilo, D. Xie, and K. Ren, “Attribute-based signature
and its applications,” in Proc. 5th International Symposium on Information,

Computer and Communications Security, Guangzhou, China, 2010, pp. 60-69.

[11] S. Ruj, M. Stojmenovic, and A. Nayak, “Decentralized access control with
anonymous authentication of data stored in clouds,” IEEE Transactions on

Parallel and Distributed Systems, vol. 25, no. 2, pp. 384-394, 2014.

[12] Q. Huang, Y. Yang, and M. Shen, “Secure and efficient data collaboration
with hierarchical attribute-based encryption in cloud computing,” Future

Generation Computer Systems, vol. 72, pp. 239-249, 2017.

[13] R. Lu, K. Heung, A. Lashkari, and A. Ghorbani, “A lightweight
privacy-preserving data aggregation scheme for fog computing-enhanced IoT,”

IEEE Access, vol. 5, pp. 3302-3312, 2017.

[14] K. Lee, D. Kim, D. Ha, U. Rajput, and H. Oh, “On security and privacy
issues of fog computing supported Internet of Things environment,” in Proc.

2015 International Conference on the Network of the Future, Montreal, QC,
Canada, 2015.

[15] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Proc. 24th

Annual International Conference on the Theory and Applications of
Cryptographic Techniques Aarhus, Denmark, 2005, pp. 457-473.

[16] A. Lewko and B. Waters, “Decentralizing attribute-based encryption,” in

Proc. 30th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tallinn, Estonia, 2011, pp. 568-588.

[17] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based

encryption for fine-grained access control of encrypted data,” in Proc. 13th
ACM Conference on Computer and Communications Security, New York,

USA, 2006, pp. 89-98.

[18] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proc. 2007 IEEE Symposium on Security and

Privacy, Berkeley, California, USA, 2007, pp. 321-334.

[19] S. Ruj, A. Nayak, and I. Stojmenovic, “Distributed fine-grained access
control in wireless sensor networks,” in Proc. 2011 IEEE International

Parallel & Distributed Processing Symposium, Anchorage, Alaska, USA, 2011,

pp. 352-362.
[20] S. Yu, K. Ren, and W. Lou, “FDAC: toward fine-grained distributed data

access control in wireless sensor networks,” IEEE Transactions on Parallel

and Distributed Systems, vol. 22, no. 4, pp. 673-686, 2011.
[21] C. Hu, H. Li, Y. Huo, and T. Xiang, “Secure and efficient data

communication protocol for wireless body area networks,” IEEE Transactions

on Multi-Scale Computing Systems, vol. 2, no. 2, pp. 94-107, 2016.
[22] Y. Jiang, W. Susilo, Y. Mu, and F. Guo. (2017, Jan.). Ciphertext-policy

attribute-based encryption against key-delegation abuse in fog computing.

Future Generation Computer Systems. [Online]. Available:
https://doi.org/10.1016/j.future.2017.01.026

[23] L. Yeh, P. Chiang, Y. Tsai, and J. Huang. (2015, Oct.). Cloud-based

fine-grained health information access control framework for lightweight IoT
devices with dynamic auditing and attribute revocation. IEEE Transactions on

Cloud Computing. [Online]. Available: https://doi.org/10.1109/TCC.2015.

2485199
[24] X. Chen, J. Li, X. Huang, J. Ma, and W. Lou, “New publicly verifiable

databases with efficient updates,” IEEE Transactions on Dependable & Secure

Computing, vol. 12, no. 5, pp. 546-556, 2015.

[25] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms for secure

outsourcing of modular exponentiations,” IEEE Transactions on Parallel &

Distributed Systems, vol. 25, no. 9, pp. 2386-2396, 2014.
[26] S. Hohenberger and B. Waters, “Online/offline attribute-based encryption,”

in Proc. 17th International Conference on Practice and Theory in Public-Key
Cryptography, Buenos Aires, Argentina, 2014, pp. 293-310.

[27] N. Oualha and K. T. Nguyen, “Lightweight attribute-based encryption for

the internet of things,” in Proc. 25th International Conference on Computer
Communications and Networks, Waikoloa, Hawaii, USA, 2016, pp. 1-6.

[28] A. Lounis, A. Hadjidj, A. Bouabdallah, and Y. Challal, “Healing on the

cloud: Secure cloud architecture for medical wireless sensor networks,” Future
Generation Computer Systems, vol. 55, pp. 266-277, 2016.

[29] C. Zuo, J. Shao, G. Wei, M. Xie, and M. Ji. (2016, Nov.). CCA-secure

ABE with outsourced decryption for fog computing. Future Generation
Computer Systems. [Online]. Available: https://doi.org/10.1016/j.future.2016.

10.028

[30] Y. Yang, X. Zheng, and C. Tang. (2016, Nov.). Lightweight distributed
secure data management system for health internet of things. Journal of

Network and Computer Applications. [Online]. Available: https://doi.org/

10.1016/ j.jnca.2016.11.017
[31] L. Yang, A. Humayed, and F. Li, “A multi-cloud based privacy-preserving

data publishing scheme for the internet of things,” in Proc. 32nd Annual

Computer Security Applications Conference, Los Angeles, California, USA,
2016, pp. 30-39.

[32] P. Zhang, Z. Chen, J.K. Liu, K. Liang, and H. Liu. (2016, Dec.). An

efficient access control scheme with outsourcing capability and attribute update
for fog computing. Future Generation Computer Systems. [Online]. Available:

https://doi.org/10.1016/j.future.2016.12.015

[33] H.K. Maji, M. Prabhakaran, and M. Rosulek, “Attribute-based signatures,”
in Proc. 11th Cryptographers' Track at the RSA Conference 2011: Topics in

Cryptology, San Francisco, CA, USA, 2011, pp. 376-392.

[34] J. Su, D. Cao, B. Zhao, X. Wang, and I. You, “ePASS: an expressive
attribute-based signature scheme with privacy and an unforgeability guarantee

for the Internet of Things,” Future Generation Computer Systems, vol. 33, no. 2,

pp. 11-18, 2014.
[35] X. Chen, J. Li, X. Huang, J. Li, Y. Xiang, and D.S. Wong, “Secure

outsourced attribute-based signatures,” IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 12, pp. 3285-3294, 2014.
[36] G. Fortino, A. Rovella, W. Russo, and C. Savaglio, “On the classification

of cyberphysical smart objects in the internet of things,” in Proc. International

Workshop on Networks of Cooperating Objects for Smart Cities, Berlin,
Germany, 2014, pp. 3-9.

[37] B. Lynn, The pairing-based cryptography library, [Online]. Available:

http://crypto.stanford.edu/pbc/.

