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 

Abstract—Fog computing is a paradigm that extends cloud 

computing to the edge of the network. It can provide computation 

and storage services to end devices in Internet of Things (IoT). 

Attribute-based cryptography is a well-known technology to 

guarantee data confidentiality and fine-grained data access 

control. However, its computational cost in encryption and 

decryption phase is linear with the complexity of policy. In this 

paper, we propose a secure and fine-grained data access control 

scheme with ciphertext update and computation outsourcing in 

fog computing for IoT. The sensitive data of data owner are first 

encrypted using attribute-based encryption with multiple policies 

and then outsourced to cloud storage. Hence, the user whose 

attributes satisfy the access policy can decrypt the ciphertext. 

Based on attribute-based signature technique, authorized user 

whose attributes integrated in the signature satisfy the update 

policy can renew the ciphertext. Specifically, most of encryption, 

decryption and signing computations are outsourced from end 

devices to fog nodes, thus the computations for data owners to 

encrypt, end users to decrypt, re-encrypt and sign are irrelevant 

to the number of attributes in the policies. The security analysis 

shows that the proposed scheme is secure against known attacks, 

and the experimental results show that the fog nodes perform 

most of the computation operations of encryption, decryption and 

signing, hence the time of encryption for data owner, decryption, 

re-encryption and signing for users is small and constant. 

 
Index Terms—Internet of Things, Fog computing, Access 

control, Data security, Attribute based encryption, Attribute 

based signature 

 

I. INTRODUCTION 

OWADAYS, the cloud computing is considered as a 

promising computing paradigm, since it can provide 

elastic computing resources to users based on the techniques of 

distributed computing, virtualization, and so on [1]. However, 

the prevalence of the Internet of Things (IoT) applications are 

now changing the main factor of computing [2,3]. The 

centralized computing systems are starting to suffer from the 

unbearable transmission latency and degraded service due to 
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the extraordinary huge volume traffic between IoT devices and 

cloud. Fog computing is a promising technology that takes 

advantage of both the paradigms of cloud computing and the 

IoT, which has the characteristics of location awareness, 

geo-distribution, low latency, mobility support, etc. [4]. 

Although the great benefits brought by fog computing 

paradigm, security problems including data confidentiality and 

access control are similar to that in the area of cloud computing 

and IoT. Moreover, they are more easily compromised and 

low-trustworthy since fog nodes are deployed at the network 

edge and much lower cost than cloud servers [5]. One 

promising approach to solving such problems is to encrypt data 

in advance before the upload. The concept of attribute-based 

encryption (ABE) is a one-to-many cryptographic technique 

that fulfills these requirements [6]. It features a mechanism that 

enables an access control over encrypted data using access 

policies and ascribed attributes among private keys and 

ciphertexts. Especially, the ciphertext-policy ABE (CP-ABE) 

enables data owner to define the access policy over a universe 

of attributes that the user needs to possess in order to decrypt 

the ciphertext, and enforce it on the data [7]. In this way, the 

confidentiality and fine-grained access control of data can be 

guaranteed. 

However, existing ABE-based solutions mainly focus on 

how to afford secure data access for users, few works consider 

that there is another requirement that data owner may want to 

authenticate some users to update the encrypted data [8]. For 

instance, Alice is a data owner and she outsources the encrypted 

data to cloud, she hopes that only her several friends who are 

regarded as valid users can renew the initial ciphertext. Thus, 

the key point of secure ciphertext update is that the user who 

renews the ciphertext should be able to prove to the cloud 

service provider (CSP) that he is a valid user. The traditional 

approach is to sign the modified data, which means CSP must 

simultaneously maintain a public key list of valid users to 

verify the identities of users. However, it would bring a lot of 

extra burden to maintain the key list if existing a large number 

of users, and CSP can know the identities of users in this way, 

which discloses the user privacy. A novel cryptographic 

technique known as attribute-based signature (ABS) is able to 

help CSP to verify whether the user is valid [9-11]. In an ABS 

system, user can sign messages with a claim policy and his 

attributes. Then, with the signature, the CSP can check whether 

the signer's attributes satisfy the claim policy while remaining 

completely ignorant of the identity of signer. Therefore, 

adopting ABE and ABS can achieve data confidentiality, 

Secure Data Access Control with Ciphertext 

Update and Computation Outsourcing in Fog 

Computing for Internet of Things 

Qinlong Huang, Yixian Yang, and Licheng Wang 

N 



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727054, IEEE Access

 2 

fine-grained access control and user verification, but it also 

brings high computational cost at the same time in fog 

computing [12]. The encryption, decryption and signing 

operations of ABE and ABS require a large number of module 

exponentiations, which commonly grow linearly with the 

number of attributes in policies. This presents a significant 

challenge for users who access and modify data on 

resource-constrained IoT devices with limited computation and 

storage capacity. 

In this paper, we propose a secure data access control scheme 

in fog computing for IoT. The main contributions are as 

follows: 

1) We propose a fine-grained data access control scheme 

with ciphertext update based on CP-ABE and ABS in fog 

computing. First, the sensitive data from IoT devices are 

encrypted with multiple policies and then outsourced to cloud 

servers through nearby fog nodes. The authorized user whose 

attributes satisfy the access policy can decrypt the ciphertext 

stored in the cloud servers. Second, the authorized user can 

modify the decrypted data and re-outsource it again with his 

signature. If the user’s attributes in the signature satisfy the 

update policy, the cloud servers can renew the ciphertext. 

2) We provide a secure outsourcing construction which 

outsources most of encryption, decryption and signing 

computations from end IoT devices to fog nodes, thus the 

computations for data owners to encrypt, end users to decrypt, 

re-encrypt and sign are irrelevant to the number of attributes in 

the policies. 

The experimental results show that fog nodes perform the 

heavy computation operations of encryption, decryption and 

signing, hence the time of encryption for data owner, 

decryption, re-encryption and signing for users is small and 

constant. This paper is structured as follows. We review related 

work in Section II, introduce the preliminaries and definitions 

in Section III, and provide the system model, system definition 

and security model in Section IV. The detailed construction of 

algorithms is given in Section V, and the security and 

performance of our scheme are analyzed in Section VI and VII 

respectively. Finally, we conclude this paper in Section VIII. 

II. RELATED WORKS 

The concept of fog computing is proposed by Cisco in 2014, 

which can be regarded as a layer in the middle of the cloud and 

end users consisted by fog nodes, such as hardened routers, 

switches, and etc. [13]. They are much closer to end users than 

cloud servers, and some of the workloads and services taken in 

the cloud are moved to the fog nodes. Similar to the cloud 

servers, fog nodes are not fully trusted as well, data security 

would raise great concerns from users when they store sensitive 

data on cloud servers through fog nodes [14]. Thus, a new 

access control scheme with cloud, fog and users should be 

considered, since the network structures and system models are 

different, in which fog nodes should assist user, to make less 

computational complexity and more flexibility left for users. 

ABE is a promising cryptographic technique to realize 

scalable, flexible, and fine-grained access control solutions. 

The notion of ABE was first introduced by Sahai and Waters as 

a new method for fuzzy identity-based encryption [15,16]. 

ABE has two variants, key-policy ABE (KP-ABE) [17] and 

CP-ABE [18]. Actually, it becomes a powerful mechanism that 

can be applied to realize access control in many applications in 

IoT [19-22]. Yu et al. [20] introduced the fine-grained data 

access control problem in wireless sensor networks for the first 

time, and they adopted KP-ABE to protect data. In contrast to 

KP-ABE, CP-ABE turns out to be well suited for access control 

in IoT due to its expressiveness in describing access policy of 

ciphertext. Hu et al. [21] designed a secure data communication 

scheme between wearable sensors and data consumers by 

employing CP-ABE in wireless body area networks. Jiang et al. 

introduced a CP-ABE scheme against key-delegation abuse in 

fog computing [22]. Yeh et al. [23] proposed a fine-grained 

health information access control framework in the cloud for 

lightweight IoT devices. 

However, the most significant drawback of ABE for the use 

in fog computing is the computational cost in the encryption 

and decryption phase which is linear with the complexity of 

policy. Fog nodes, the edge of the cloud and closer to end users, 

are one of the best choices for the outsourcing proxy [24,25], 

which can be used to do massive computations to reduce the 

computational overhead required on resource-constrained IoT 

devices. The main solution of current schemes is to distribute 

calculations of CP-ABE encryption and decryption phase, so 

that constrained IoT devices can delegate most of the 

consuming operations to nodes of the network [26-31]. Lounis 

et al. [28] designed a cloud-based architecture for medical 

WSNs, in which sensor nodes outsource the encryption 

operations to a trusted gateway that encrypts data based on 

CP-ABE before sending to cloud. However, this solution 

adopts a full trusted entity to perform data encryption which 

does not achieve practical computation outsourcing. Zuo et al. 

[29] designed a concrete ABE scheme with outsourced 

decryption for fog computing. Yang et al. [30] proposed a 

concrete construction with lightweight computational overhead 

for health IoT system, in which a semi-trusted computation 

center is introduced to enforce most of the heavy calculations in 

data encryption phase. Yang et al. [31] proposed two multiple 

cloud based ABE schemes for IoT, which enable receivers to 

partially outsource computationally expensive decryption 

operations to the clouds. However, these schemes only can 

support either the outsourced encryption or outsourced 

decryption. Zhang et al. proposed an access control scheme for 

fog computing, which outsources the heavy computation of 

encryption and decryption to fog nodes, thus the computations 

for data owners to encrypt and users to decrypt are irrelevant to 

the number of attributes in access policy [32]. 

In order to realize ciphertext update services in fog 

computing, the CSP must have the ability to verify the user's 

proof before accepting the modified ciphertext. ABS is an 

emerging signature algorithm to ensure anonymous user 

authentication. It was first introduced by Maji et al. [33], in 

order to provide authentication without disclosing the identities 

of the users. Based on ABS, Ruj et al. proposed a new 

decentralized access control scheme for secure data read and 

write in clouds, which supports anonymous user authentication 

[11]. In this scheme, the cloud verifies the authenticity without 

knowing the user’s identity before storing data. Su et al. 

proposed an expressive ABS scheme in IoT [34], which uses an 

attribute tree to assurance that only a user with appropriate 

attributes satisfying the access policy can endorse the message. 
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However, in the existing works of ABS, heavy computational 

cost is required during the signing phase, which also grows 

linearly with the size of predicate formula. Chen et al. are the 

first to present two outsourced ABS schemes in which the 

computational overhead at user side is greatly reduced through 

outsourcing intensive computations to untrusted CSP [35]. 

Inspired by this, our scheme realizes anonymous user 

authentication in ciphertext update phase and delegates most of 

the signing operations to the fog nodes. 

III. PRELIMINARIES AND DEFINITIONS 

A. Bilinear Map 

Let 0 and T be two multiplicative groups of prime order p. 

A bilinear map is a function 0 0: Te   with the 

following properties: 

1) Computability. There is an efficient algorithm to compute

( , ) Te g h  , for any 0,g h . 

2) Bilinearity. For all 0,g h and , pa b , we have

( , ) ( , )a b abe g h e g h . 

3) Non-degeneracy. If g is a generator of 0 , then ( , )e g g is 

also a generator of T . 

B. Access Tree 

Let T denote a tree, a logical representation of an access 

policy. Each non-leaf node x represents a threshold gate, 

described by its children and a threshold value. Let numx denote 

the number of children of a node x, and kx represent its 

threshold value. For each leaf node y, we have ky = 1. Let attry 

denote an attribute associated with leaf node y in the tree and 

parent(z) represent a parent node of the node z in the tree. Each 

child node of the node x in the tree is labelled from 1 to numx, 

and index(x) returns such label associated with the node x. 

These index values are uniquely assigned to nodes in the access 

tree for a given key in an arbitrary manner. 

Let Tx be a subtree of T rooted at the node x. If a set of 

attributes r satisfies the access tree Tx, we denote it as ( ) 1xT r  . 

We compute ( )xT r recursively as follows. For a non-leaf node x, 

it evaluates ( )xT r for all children xof node x. For non-leaf node 

x, ( )xT r returns 1 if and only if at least kx children return 1. For 

the leaf node y, it returns 1 if and only if
yattr r . 

C. Ciphertext-Policy Attribute-Based Encryption 

A CP-ABE system for access policy T consists of the 

following four algorithms. 

1) Setup (1 ) : The setup algorithm takes as input the security 

parameter and outputs a public key PK and a master secret 

key MK. 

2) KeyGen(PK, MK, S): The key generation algorithm takes 

as input the public key PK, the master secret key MK, a set S of 

attributes, and outputs a secret key SK . 

3) Enc(PK, M, T): The encryption algorithm takes as input 

the public key PK, a message M and an access policy T, and 

outputs a ciphertext CT. 

4) Dec(PK, SK, CT): The decryption algorithm takes as input 

the public key PK, a secret key SK , a ciphertext CT with an 

access policy T. If S T , it outputs the message M. 

D. Attribute-Based Signature 

The ABS scheme consists of four algorithms as follows: 

1) Setup (1 ) . The system setup is the algorithm run by the 

attribute authority for which the input is the security parameter

 and the outputs are public key PK and master secret key MK. 

2) KeyGen(PK, MK, S). The key generation is the algorithm 

run by the attribute authority on inputs public key PK, master 

secret key MK and a set of attributes S to generate the secret key 

SK for the signer. 

3) Sign(PK, M, T, SK). The signing is the algorithm run by a 

signer on inputs PK, a message M, a claim policy T and secret 

key SK to generate a signature ST for the message. 

4) Verify(PK, M, T, ST). The verifying is the algorithm run 

by a verifier on inputs PK, a message M, a claim policy T and a 

signature ST. The output is true if ST is a valid signature by a 

signer whose attributes satisfying T. 

IV. SYSTEM MODEL AND SECURITY MODEL 

A. System Model 

The system model of our proposed scheme consists of 

attribute authority, CSP, fog nodes, data owners and users, as 

shown in Fig. 1. 

 
Fig. 1.  System model 

 

1) Attribute authority. The attribute authority is a fully 

trusted party which is in charge of generating system 

parameters as well as secret key for each user. 

2) CSP. The CSP is a semi-trusted party which provides 

high-capacity and online data storage service. It is also 

responsible for verifying the signature before accepting the 

updated ciphertext. 

3) Fog node. The fog nodes are also semi-trusted parties 

which are deployed at the network edge and offer a variety of 

services. They are in charge of generating part of the ciphertext 

and uploading the whole ciphertext to the CSP, and also helping 

users to decrypt the ciphertext from the CSP. Moreover, they 

assist end users to sign the ciphertext update request. 

4) Data owner. The data owner has a great amount of data 

from the IoT devices to be uploaded to cloud. It is designed to 

define access and update policies to generate the whole 

ciphertext with the fog nodes. 
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5) User. The user is attached to fog nodes and equipped with 

IoT devices such as smart cameras, medical sensors and smart 

meters [36]. Since the IoT device has limited computation and 

storage ability, it wishes to gain access to the ciphertext stored 

in CSP with the help of fog nodes. If the user’s attribute set 

satisfies the access policy in the ciphertext, he is able to decrypt 

the underlying data. After accessing the data, the user may 

make a modification and wish to re-encrypt the data. If the 

user’s attribute set satisfies the update policy in the ciphertext, 

the CSP will renew the stored ciphertext. 

B. System Definition 

We define our proposed scheme by describing the following 

five phases and nine algorithms. 

Phase 1: System setup 

1) Setup(1 ). The attribute authority takes as input security 

parameter  , and outputs the system public key PK and master 

secret key MK. 

Phase 2: Key generation 
2) KeyGen(PK, MK, S). The attribute authority takes as input 

PK, MK, a set of attributes S, outputs the secret key SK for the 

user. And the outsourcing key SK  is sent to fog nodes. 

Phase 3: Data encryption 

3) Fog.Encrypt(PK, aT ). The fog node takes as input PK, an 

access policy aT , outputs a partial ciphertext CT  . 

4) Owner.Encrypt(PK, M, ,uT CT  ). The data owner takes as 

input PK, a data M, an update policy uT , a partial ciphertext

CT  , and outputs the ciphertext CT. 

Phase 4: Data decryption 

5) Fog.Decrypt(PK, CT, SK  ). The fog node takes as input 

PK, a ciphertext CT and a user’s SK  , and outputs a partial 

decrypted ciphertext T if the attributes satisfy access policy aT

in the ciphertext CT. 

6) User.Decrypt(T, SK). The user takes as input a partial 

decrypted ciphertext T and SK, then recovers the DK and 

outputs the plaintext M. 

Phase 5: Ciphertext update 

7) Fog.Sign(PK, U, uT , SK  ). The fog node takes as input 

PK, a user’s ciphertext update request U and SK  , update policy

uT . It outputs a partial signature ST  and the global key GK. 

8) User.Sign(PK, ST  , SK). The user takes as input PK, a 

partial signature ST  and SK, outputs the signature ST. 

9) Verify(PK, ST, GK). The CSP takes as input PK, a 

signature ST and a global key GK. It outputs true if ST is a valid 

signature by the signer whose attributes satisfying uT . 

The work flow of our scheme is shown in Fig. 2. At the 

initialization phase, attribute authority uses the Setup algorithm 

to generate systems parameter. By the KeyGen algorithm, 

attribute authority generates secret keys for data owners and 

users. In order to achieve high encryption efficiency, the data 

owner first encrypts the collected data with a random DK by 

applying symmetric encryption algorithm and defines an access 

policy and an update policy, the fog node uses the Fog.Encrypt 

algorithm to partially encrypt the data with the access policy, 

and then data owner uses the Owner.Encrypt algorithm to finish 

the encryption with both the access policy and update policy 

and stores it to the CSP. When accessing the data, the fog node 

first uses the Fog.Decrypt algorithm to partially decrypt the 

ciphertext, and then the user can use the User.Decrypt 

algorithm to recover the data. 

After modifying the data, user also uses the algorithms in the 

encryption phase to encrypt the updated data. Before making 

the final modification, user uses the User.Sign algorithm to 

generate the signature with the partial signature returned from 

fog node which runs the Fog.Sign algorithm. Then the CSP 

uses the Verify algorithm to verify the signature and finally 

accepts the updated ciphertext if the signature is true. In the end, 

other users can obtain the updated data with the decryption 

algorithms. Therefore, the users with IoT devices can access 

and update confidential data in fog computing efficiently. 

 
Fig. 2.  Work flow of our scheme 

 

C. Security model 

In our scheme, we assume that cloud servers and fog nodes 

are honest but curious, which means they execute the tasks and 

may collude to get the unauthorized data. Specifically, the 

security model covers the following aspects. 

1) Data confidentiality. The unauthorized users which are not 

the intended receivers defined by data owner should be 

prevented from accessing the data. 

2) Fine-grained access control. The data owner can custom 

expressive and flexible policies so that the data only can be 

accessed and updated by the users whose attributes satisfy these 

policies. 

3) Authentication. If users could not satisfy the update policy 

in ciphertexts, it should also be prevented from updating the 

ciphertexts. 

4) Collusion resistance. Two or more users cannot combine 

their secret and outsourcing keys and get access to the data they 

cannot access individually. 
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V. CONSTRUCTION OF ALGORITHMS 

In fog computing, it is the essential requirement to make less 

computational complexity, since most of the IoT devices are 

resource-constrained. First, we propose fine-grained data 

access control and efficient ciphertext update scheme based on 

CP-ABE and ABS. The authorized users whose attributes 

satisfy the access policy can decrypt the ciphertext, and satisfy 

the update policy can renew the ciphertext. Second, we provide 

a secure outsourcing construction which outsources most of 

encryption, decryption and signing computations from end IoT 

devices to fog nodes. The construction details are as follows. 

A. System Setup 

The attribute authority runs Setup algorithm to select a 

bilinear map 0 0: Te   , where 0 and T are two 

multiplicative groups with prime order p, and g is the generator 

of 0 . Then the attribute authority randomly chooses 0h

and , p   , chooses cryptographic hash functions 1 :H

*{0,1}* p , 2 0:{0,1}*H  , finally outputs a system 

public key ( , , , , , ( , ) )PK g h g g h e g g    and a master secret 

key ( , )MK   . 

B. Key Generation 

The attribute authority runs KeyGen algorithm to select a 

random
p  , which is a unique secret assigned to each user. 

Then the attribute authority chooses a random
p  , and 

random
jr for each attribute j S , where S is the attribute set of 

user, and outputs the secret key and outsourcing key. 

 

( )

1 2 1

( )

( , ,{ ( ) , } )j jr r

j j j S

SK D g

SK D g h D g D g H j D g

  

   





 

     
 (1) 

The outsourcing key 1 2( , ,{ , } )j j j SSK D D D D 
   of user is 

sent to the fog nodes, and the user only stores SK. 

C. Data Encryption 

Before uploading data to the CSP, data owner first chooses a 

random
pDK  , and encrypts the data M with DK using 

symmetric encryption algorithm, denoted as ( )DKC SE M . 

Then data owner defines an access policy aT and an update 

policy uT , and sends aT to fog nodes. 

The fog nodes run Fog.Encrypt algorithm to perform the 

outsourced encryption. For each node x in access policy tree aT , 

the fog nodes choose a polynomial xp . Beginning from the root 

node R , the xp  is chosen in a top-down manner. For each node

x in the tree, set the degree xd of the polynomial xp to be one 

less than the threshold value xk of that node, that is 1x xd k  . 

Starting with the root node R , the algorithm chooses a 

random
ps and sets (0)Rp s . Then, it chooses Rd other 

points of the polynomial Rp randomly to define it completely. 

For any other node x , it sets
( )(0) ( ( ))x parent xp p index x and 

chooses xd other points randomly to completely define xp . Let 

Y be the set of leaf nodes in aT , the fog nodes output a partial 

ciphertext CT  . 

 
3 4

(0) (0)

5 1

( , , ,

{ , ( ) } )y y

s s

a

p p

y y y y Y

CT T C g C h

C C g C H attr

 



    

  
 (2) 

Finally, the fog nodes return CT  to the data owner. The data 

owner runs Owner.Encrypt algorithm to select 
pt at 

random and computes
1 ( , ) tC DK e g g   with DK, and 

computes
2 3 3 4 4, ,t t tC g C C g C C h       . Finally, the data 

owner outputs the ciphertext CT . 

 

1

( ) ( )

2 3 4

(0) (0)

5 1

( , , ( ), ( , ) ,

, , ,

{ , ( ) } )y y

t

a u DK

t s t s t

p p

y y y y Y

CT T T C SE M C DK e g g

C g C g C h

C C g C H attr



  



   

  
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  (3) 

D. Data Decryption 

If attributes of the user satisfy the access policy aT , he can 

decrypt CT successfully by running the following decryption 

algorithm and obtain the symmetric key DK. Fog nodes run 

Fog.Decrypt algorithm to obtain ciphertext from the CSP. The 

fog nodes first run DecryptNode algorithm which is a recursive 

algorithm. The algorithm takes a ciphertext CT, SK  , and a 

node x from the access tree aT as input. 

1) If the node x is a leaf node, then we let xz attr and define 

as follows. If z S , then 

 
(0)

1

(0)

1

(0)

( , )
( , , )

( , )

( ( ) , , )

( , ( ) )

( , )

xz

xz

x

z x

z x

pr

pr

x

p

e D C
DecryptNode CT SK x

e D C

e g H z g

e g H attr

e g g





 
 





  (4) 

If z S , then ( , , )DecryptNode CT SK x  . 

2) If the node x is a non-leaf node, the algorithm

( , , )DecryptNode CT SK x proceeds as follows: for all nodes n

that are children of x , it calls ( , , )DecryptNode CT SK n and 

stores the output as nF . Let xS be an arbitrary xk -sized set of 

child nodes n such that nF  . If no such set exists, then the 

node is not satisfied and the function returns⊥. Otherwise, 

computes and returns the result. 

 

,

,( )

,

(0)

(0)( ( ))

(0)( )

(0)

( ( , ) )

( , )

( , )

j Sx

x

j Sparent n x

x

j Sx x

x

x

x n

n S

r p index n

n S

r p j

n S

r p

F F

e g g

e g g

e g g





















 



















  (5) 

Let ( )j index n and { ( ) : }x xS index n n S   . If the access 

policy tree aT is satisfied by S, we set the result of entire 

evaluation for the access tree aT as F. 

 

(0)
( , , ) ( , )

( , )

Rp

s

F DecryptNode CT SK R e g g

e g g





 


  (6) 



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727054, IEEE Access

 6 

Then, the fog nodes compute 

 
( )

( )1 3

( )

2 4

( , ) ( , )
( , )

( , ) ( , )

s t
s t

s t

e D C e g h g
B e g g

e D C e g h

  


 





     (7) 

and 

 ( )( , ) ( , ) = ( , )s t s tA B F e g g e g g e g g      (8) 

Finally, the fog nodes send a partial ciphertext ( , ,a uT T T

1 2( ), ( , ) , , ( , ) )t t t

DKC SE M C DK e g g C g A e g g      to 

the user. After receiving T from fog nodes, the user runs the 

User.Decrypt algorithm to obtain the symmetric key DK. 

 1

( )

2

( , ) ( , )

( , ) ( , )

t t

t

C A DK e g g e g g
DK

e C D e g g

 

  

  
    (9) 

Thus, ( )DKSE M can be decrypted with DK by applying the 

symmetric decryption algorithm. 

E. Ciphertext Update 

After modifying the decrypted data, the user re-encrypts the 

modified data as described in data encryption phase, then signs 

the ciphertext update request with his attributes. Only if the 

user’s attributes in the signature satisfy the update policy uT , the 

ciphertext will be authorized to be renewed by CSP. 

The user sends the request U, and update policy uT  to fog 

nodes. The fog nodes run Fog.Sign algorithm to perform the 

outsourced signing. For each node x in the update policy tree uT , 

the fog nodes choose a polynomial xq . Beginning from the root 

node R , the xq is chosen in a top-down manner. For each node

x in the tree, set the degree xd  of the polynomial xq to be one 

less than the threshold value xk  of that node, that is 1x xd k   . 

Starting with the root node R , the algorithm chooses a random

pr and sets (0)Rq r . Then, it chooses Rd  other points of 

the polynomial Rq randomly to define it completely. For any 

other node x , it sets
( )(0)x parent xq q ( ( ))index x and chooses xd 

other points randomly to completely define xq . Let Z be the set 

of leaf nodes in uT , the fog nodes output a global key GK . 

 
(0) (0)

1{ , ( ) }z zq q

z z z z ZGK K g K H attr 
     (10) 

For each j Z , the fog nodes choose
j pt  randomly and 

compute the following with SK  . 

1) If j S Z , then computes 

 

( )1

1 1

( )1

( ( ) ) ( ) ,

( )

j j j

j j j

t r t rr r

j j

t r t rr

j j

S D H j g H j

S D g g

 



  

   
  (11) 

2) If j Z S Z , then computes 

 
1 1

1 1( ( ) ) ( ) , ( )j j j jt t r t t rr r

j jS H j H j S g g      (12) 

Then, the fog nodes select
p  at random and output the 

partial signature ST  . 

 1 2 2 3( , ( ) , , { , } )j j j ZST U S H U S g S S S 


         (13) 

Finally, the fog nodes return ST  to the user. Then the user 

runs User.Sign algorithm to select
p  at random and 

compute
1 1 2 2 2( ) ,S S H U D S S g       . Finally, the user 

outputs the signature ST . 

 ( )

1 2 2 3( , ( ) , , )ST U S H U g S g S              (14) 

If attributes of the user satisfy the update policy uT stored in 

the initial ciphertext, the CSP can verify the signature by 

running the Verify algorithm. The CSP first runs VerifyNode 

algorithm which can be described as a recursive algorithm. The 

algorithm takes a signature ST, GK  and a node x from the 

update tree uT as input. 

1) If the node x is a leaf node, then we let xz attr and define 

as follows. If z S Z , then 

 
(0)( )

1

(0)( )

1

(0)

( , )
( , , )

( , )

( ( ) , , )

( , ( ) )

( , )

xz z

xz z

x

z x

z x

qr t rr

qr t r

x

r q

e S K
VerifyNode ST GK x

e S K

e g H z g

e g H attr

e g g












 





  (15) 

If z Z S Z , then 

 
(0)

1

(0)

1

( , )
( , , )

( , )

( ( ) , , )

( , ( ) )

1

xz

xz

z x

z x

qt r

qt r

x

e S K
VerifyNode ST GK x

e S K

e H z g

e g H attr


 





  (16) 

2) If the node x is a non-leaf node, the algorithm

( , , )VerifyNode ST GK x proceeds as follows: for all nodes n that 

are children of x , it calls ( , , )VerifyNode ST GK x and stores the 

output as nI . We also let xS be an arbitrary xk -sized set of child 

nodes n such that nI  . If no such set exists, then the node is 

not satisfied and the function returns⊥. Otherwise, it computes 

and returns the result. 

 

,

,( )

,

(0)

(0)( ( ))

(0)( )

(0)

( ( , ) )

( , )

( , )

j Sx

x

j Sparent n x

x

j Sx x

x

x

x n

n S

r q index n

n S

r q j

n S

r q

I I

e g g

e g g

e g g





















 



















  (17) 

If the update policy tree uT is satisfied by S, we set the result 

of entire evaluation for the update tree uT as I. 

 

(0)
( , , ) ( , )

( , )

Rr qI VerifyNode ST GK R e g g

e g g






 


  (18) 

Then, the CSP checks the following equation. 

 

( )

1 2

2 2 2

( , ) ( , ( ) )

( ( ), ) ( ( ), ) ( , )

( , )

e g S e g H U g

e H U S I e H U g e g g

e g g

    

  



 






 



  (19) 

If this equation holds, then the CSP accepts the signature, 

which indicates the CSP will accept the updated ciphertext 

from this user whose attributes satisfy the update policy. 

Otherwise, the CSP rejects the user’s ciphertext update request. 
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VI. SECURITY ANALYSIS 

If there exists a probabilistic polynomial time (PPT) 

adversary can win our scheme with non-negligible advantage, 

then there is a PPT algorithm that can distinguish a decisional 

bilinear Diffie-Hellman (DBDH) tuple from a random tuple, as 

proofed in [32]. Hence, our scheme is secure to the DBDH 

assumption. We analyze the security properties of our scheme 

as follows. 

A. Data Confidentiality 

The data is first encrypted using the access policy and update 

policy, and the confidentiality of the data can be guaranteed 

against users which don’t hold a set of attributes that satisfy the 

access policy. In encryption phase, though the fog node 

performs encryption computations for user, it still cannot 

access the data without the secret key. During the decryption 

phase, since the set of attributes cannot satisfy the access policy 

in the ciphertext, the cloud servers or fog nodes cannot recover 

the value ( , ) tA e g g  to further get desired value DK, because 

it does not know the D of user. Therefore, only the users with 

valid attributes that satisfy the access policy can decrypt the 

ciphertext. 

B. Fine-Grained Access Control 

Fine-grained access control allows flexibility in specifying 

differential access rights of individual users. To enforce this 

kind of access control, we utilize CP-ABE to escort the 

symmetric encryption key. In the encryption phase of our 

scheme, the data owner is able to enforce an expressive and 

flexible access policy and encrypt the symmetric key which is 

used to encrypt the data, then outsource the ciphertext to cloud 

servers. Specifically, the access policy of encrypted data 

defined in access tree supports complex operations including 

both AND and OR gate, which is able to represent any desired 

attribute set. Thus, such construction achieves fine-grained 

access control. 

C. Authentication 

Our scheme exploits ABS to achieve ciphertext update with 

authentication, even adversary may try to forge a signature with 

the update policy that his attributes do not satisfy. Let F be an 

adversary who makes at most
1 2
, , ,H H O Kq q q q and Sq queries to 

random oracles H1, H2, outsourcing key generation oracle, 

secret keys generation oracle and signing oracle respectively, 

and produces a successful forgery against our scheme with a 

non-negligible probability  . Then there exists an algorithm B 

that solves the computational Diffie-Hellman (CDH) problem 

with a non-negligible probability
2Hq   [12]. 

D. Collusion Resistance 

The users may intend to combine their secret keys and 

outsourcing keys to access the data which they cannot access 

individually. In our scheme, attribute authority generates secret 

keys for different users, the secret key is associated with 

random  , which are uniquely related to each user and make the 

combination of components in different secret keys 

meaningless. Suppose two or more users with different 

attributes combine together to satisfy the access policy, they 

cannot compute ( , ) sF e g g  in the outsourced decryption 

phase. Thus, the proposed scheme is collusion-resistant. 

VII. PERFORMANCE ANALYSIS 

We analyze the efficiency of our proposed scheme in this 

section. We will focus on the performance efficiency and 

implement experiments to evaluate the performance. 

A. Performance Efficiency 

Here we analyze the performance efficiency of our scheme 

with the several IoT-based and fog-based data sharing schemes 

based on ABS or ABE, in terms of computational complexity on 

user when performing encryption, decryption and signing. The 

comparison result is showed in Table I. Let PT be the 

computational cost of a single pairing, 0T be the computational 

cost of an exponent operation in 0 , ET be the time for an 

exponent operation in T , CN be the number of attributes in a 

ciphertext. We ignore the simple multiplication, hash, 

symmetric encryption and decryption operations. 

In the data encryption phase, since Ruj et al. [11] and Zuo et 

al. [29] perform full ABE algorithm on local, their encryption 

computational cost of data owner are 03 (2 1)C C EN T N T  and

0(2 1)CN T  respectively which both grow linearly with the 

number of attributes in access policy. In our scheme, the 

constrained IoT device only needs to cost constant time to 

encrypt the data with the help of fog nodes, which is similar 

with Zhang et al. [32]. However, Zhang et al. [32] cannot 

support ciphertext update. The similar situation appears in data 

decryption phase. From the end user’s point of view, 

computational time in our scheme and Zhang et al. [32] is lower 

than that of Ruj et al. [11] since the user only needs one pairing 

operation to recover the plaintext. Further, in the ciphertext 

update phase, compared with Ruj et al. [11] and Su et al. [34] 

which adopt standard ABS to support the update of outsourced 

ciphertext. The users in our scheme only need to perform two 

exponentiation operation in 0 to sign the ciphertext before 

sending to fog nodes. Thus, the signing cost in our scheme is 

less than that of Ruj et al. [11] and Su et al. [34] which cost

0(2 2) 2C C EN T N T  and 0(2 2)CN T respectively. 

TABLE I 

COMPUTATIONAL COMPLEXITY ON DEVICE 

Schemes Data encryption 
Data 

decryption 
Ciphertext update 

[34] - - 0(2 2)CN T  

[11] 03 (2 1)C C EN T N T   2 C PN T  0(2 2) 2C C EN T N T   

[29] 0(2 1)CN T  ET  - 

[32] 03 ET T  PT  - 

Our Scheme 02 2 ET T  PT  02T  

 

B. Experimental Analysis 

We conduct simulation experiments on a laptop as fog node 

and an android phone as IoT device. The laptop is with Intel 

CPU at 2.53 GHz, 4 GB memory and Ubuntu 16.04. The 

android phone is Samsung G9600V with a quad core processor, 

2 GB memory, and Android 6.0.1. The experimental code uses 
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the pairing-based cryptography library [37] to simulate the 

schemes. We use a pairing-friendly type-A 160-bit elliptic 

curve group based on the supersingular curve 2 3y x x  over a 

512-bit finite field. The Advanced Encryption Standard (AES) 

is chosen as the symmetric key encryption scheme. 

 
Fig. 3.  Comparison of computational overhead for encryption 

 

 

Fig. 4.  Comparison of computational overhead for decryption 

 

 

Fig. 5.  Comparison of computational overhead for signing 

 

The number of attributes used in the experiments is from 5 to 

50, and the experimental result is the average number of 10 runs. 

We consider this range to be representative enough for a wide 

range of real world IoT applications. 

First, we analyze the time cost of the data encryption and 

decryption by comparing our scheme with Zuo et al. [29] and 

Zhang et al. [32]. In data encryption phase, a data owner 

encrypts a file with an access policy and an update policy, and 

posts the encrypted file to the public cloud through fog nodes. 

Fig.3 shows the computational overhead on data owners during 

this phase. We can see the encryption time of our scheme and 

Zhang et al. [32] is constant since most of the laborious 

decryption operations are delegated to the fog nodes, while it 

versus the number of attributes in access policy in Zuo et al. 

[29]. Fig.4 shows the decryption time on users versus the 

number of users’ attributes. Specifically, in Zuo et al. [29], 

Zhang et al. [32] and our scheme, the heavy computation 

operations of decryption are outsourced to external server, such 

as cloud servers and fog nodes, thus the computation operations 

for users to decrypt in these schemes are irrelevant to the 

number of attributes in the access policy. 

The time complexity on users of ciphertext update which 

mainly refers to signing algorithms in both our scheme and Su 

et al. [34] is given in Fig.5. Concerning on the local 

computation performed by the signer, our scheme achieves 

much nearly constant performance compared with the linear 

increasing efficiency of the scheme of Su et al. [34] by 

outsourcing many computations to fog nodes. This advantage 

allows our scheme to be applied for the resource-constrained 

IoT devices to complete the signing task. 

Moreover, we consider that the IoT device has limited 

storage ability. Since the outsourcing key can be firstly 

generated by attribute authority and then sent to the fog nodes. 

Therefore, the user only needs to store a small-sized component 

D locally but still maintaining encryption, decryption and 

signing capability. We argue that such amount is acceptable for 

IoT devices such as Samsung phone used in our experiments. 

In summary, the experimental results show that our scheme 

incurs less computational cost on the encryption of data owner, 

the decryption and signing of user, which ensures both 

fine-grained data access control and efficient ciphertext update 

in fog computing. Hence, our scheme could be applied to smart 

healthcare, vehicular cloud computing, and etc. 

VIII. CONCLUSION 

In this paper, we propose a secure data access control scheme 

in fog computing for IoT based on CP-ABE and ABS. The 

sensitive data of users are first encrypted with both access 

policy and update policy, and then outsourced to cloud servers 

through fog nodes. Thus, the users whose attributes satisfy the 

access policy can decrypt the ciphertext. In order to address the 

issue of data modification, the CSP will check the signature, to 

ensure that only the users whose attributes satisfy the update 

policy can renew the ciphertext. Hence, our scheme achieves 

both fine-grained data access control and secure ciphertext 

update. 

Moreover, our scheme presents an outsourced encryption, 

decryption and signing construction by delegating most of the 

operations to fog nodes. The extensive performance analysis 

and experiments are conducted, and the results indicate our 

scheme can well tolerate the increasing number of attributes, 
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which is suitable for the resource-constrained IoT devices in 

fog computing. 
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