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Abstract—Nowadays the prevailing detectors of steganographic
communication in digital images mainly consist of three steps, i.e.,
residual computation, feature extraction and binary classification.
In this paper, we present an alternative approach to steganalysis
of digital images based on convolutional neural network (CNN),
which is shown to be able to well replicate and optimize
these key steps in a unified framework and learn hierarchical
representations directly from raw images. The proposed CNN
has a quite different structure from the ones used in conventional
computer vision tasks (CVs). Rather than a random strategy,
the weights in first layer of the proposed CNN are initialized
with the basic high-pass filter set used in calculation of residual
maps in Spatial Rich Model (SRM), which acts as a regularizer
to suppress the image content effectively. To better capture the
structure of embedding signals, which usually have extremely low
SNR (stego signal to image content), a new activation function
called truncated linear unit (TLU) is adopted in our CNN model.
Finally, we further boost the performance of the proposed CNN
based steganalyzer by incorporating the knowledge of selection
channel. Three state-of-the-art steganographic algorithms in
spatial domain, e.g., WOW, S-UNIWARD and HILL are used
to evaluate the effectiveness of our model. Compared to SRM
and its selection-channel-aware variant maxSRMd2, our model
achieves superior performance across all tested algorithms for a
wide variety of payloads.

Index Terms—Steganalysis, Convolutional Neural Networks,
Feature Learning.

I. INTRODUCTION

IMAGE steganography is the science and art to conceal
secret messages in the images through slightly modifying

the pixel values (in spatial domain) or DCT coefficients (in
JPEG domain). Nowadays, the most secure steganographic
schemes are content-adaptive ones, which tend to embed the
secret data in the regions with complex content where the
embedding traces are less detectable. Examples in spatial
domain include HUGO [1], WOW [2] and S-UNIWARD [3].

Corresponding to the development of image steganography,
substantial progress has also been made in steganalysis, with
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the aim of revealing the presence of the hidden message in
images. The state-of-the-art steganalyzers in spatial domain
are the Spatial Rich Model (SRM) [4] and its several variants
[5], [6]. These steganalysis tools are constructed by assembling
a rich model as a union of many diverse submodels formed
by joint distributions of neighboring samples from quantized
image noise residuals obtained using linear and non-linear
high-pass filters. Recently, to better cope with the emerging
content-adaptive steganographic schemes with ever-increasing
security, some selection-channel-aware steganalysis feature
sets [6], [7] were proposed, among which, based on the
rich media model and by utilizing the selection channel, the
maxSRM [6] improved the detection of all content-adaptive
steganographic schemes in spatial domain to a varying degree.

Currently the best image steganalyzers are built using
feature-based steganalysis and machine learning and share the
same pipeline: namely, noise residual computation, feature
construction and binary classification. The success of the
feature-based steganalysis depends heavily on the process of
feature engineering, i.e., using the domain knowledge, e.g., the
cover source model and the behavior of its opponent, to create
features that make machine learning algorithms work. For the
pipeline described above, the residuals help to improve the
SNR of stego signal, and the state-of-the-art feature sets are
unions of co-occurrences of different filter residuals, so-called
rich models, which tend to be high-dimensional (e.g., 30,000
or more). From the perspective of steganalysis, to obtain a
more complete description of cover source, high-dimensional
representation is an inevitable trend, indicating that the fea-
tures for steganalysis become increasingly complicated. In
addition, note that current state-of-the-art steganalysis features
are heuristically designed and the optimization of classifier is
independent of the feature extraction step. In other words, the
pipeline of steganalysis has barely been optimized in a unified
framework.

In this paper, we show that the pipeline of steganalysis can
be alternately implemented by a deep convolutional neural
network (CNN) [8] to learn the optimized deep hierarchical
representations for image steganalysis. An important property
of CNN is that it can extract complex statistical dependencies
from high-dimensional sensory input and efficiently learn
deep (hierarchical) representations by re-using and combining
intermediate concepts, allowing it to generalize well across a
wide variety of computer vision (CV) tasks, including image
classification [9], face recognition [10], and many others. It
naturally motivates us to consider training a CNN to dis-
tinguish covers from stegos. In this way, the raw image to
be detected can be directly mapped to a binary label (cover
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Fig. 1. The framework of image steganalysis methods and its similarity with the convolutional neural networks.

or stego) using the trained CNN. Furthermore, the feature
extraction can be optimized together with the classifier, which
helps to relieve us from the complicated feature-design step.

The first attempt of using CNNs to steganalysis is Qian
et al.’s work [11], where a Gaussian-Neuron Convolutional
Neural Network (GNCNN) was proposed for image ste-
ganalysis in spatial domain. By using the Gaussian function
instead of the ReLU or sigmoid in conventional CNNs as
the activation function, the GNCNN achieves a comparable
performance to SRM on BOSSbase [12]. Recently, Xu et al.
[13] investigated the design of CNN structure specific for
image steganalysis applications, which is featured in (1)
embedding an absolute activation (ABS) layer in the first
convolutional layer to improve the statistical modeling in the
subsequent layers; (2) applying the TanH activation function at
early stages of networks to prevent overfitting; (3) performing
batch normalization (BN) immediately before each nonlinear
activation layer. Their results show that a well-designed CNN
has the potential to provide better detection performance in
steganalysis. The authors extended their works later in [14] by
employing the network in [13] as base learners for ensemble
classifier and obtained the results that can rival the SRM.

In this paper, we develop a supervised CNN model specific
to steganalysis applications. The proposed CNN shows several
prominent characteristics different from other CNNs, which
are summarized as follows: (1) The first layer in the proposed
CNN serves as the pre-processing module for noise residuals
computation. Instead of the random strategy, the weights of the
first layer are initialized with all the 30 basic filters used in the
computation of residual maps in SRM [4], which corresponds
to 30 output feature maps of the first layer and helps to
accelerate the convergence of the network. (2) We employ a
set of hybrid activation functions in the proposed CNN, where,
in addition to the conventional ReLU function, a new function
called truncated linear unit (TLU) is introduced to the first few
layers of the network. Actually, different from the conventional
CV tasks, the process of steganography can be regarded as
the one of adding extremely low SNR embedding signals to

the cover. The adoption of the TLU in the first few layers
contributes to the adaptation to the distribution of the em-
bedding signals and enforces the CNN to learn the high-pass
filter in a more efficient manner. (3) We finally further boost
the steganalysis performance by making use of the selection
channel in training of the proposed CNN. The effectiveness
of the proposed CNN is verified with evidence from thorough
experiments using several state-of-the-art steganographic tools
for a wide variety of payloads. The proposed CNN achieves
considerable performance improvement in terms of detection
accuracy when compared with previous CNN based stegana-
lyzers [11], and outperforms the current state-of-the-art hand-
crafted feature sets, e.g., SRM [4] and maxSRMd2 [6], by a
clear margin.

The rest of the paper is organized as follows. In Section
II, we present a brief review of the framework of the pre-
vailing image steganalysis methods in spatial domain and the
convolutional neural networks (CNNs). The structure of the
proposed CNN is described in Section III, which is followed
by the experimental results and analysis in Section IV. Finally,
the concluding remarks are drawn in Section V.

II. PRELIMINARIES

A. The Framework of Prevailing Image Steganalysis Methods

The well-established paradigm [4], [15], [16] of image
steganalysis consists of three major steps, i.e., noise residual
computation, feature extraction and binary classification as
shown in Fig. 1.

1) Noise residual computation: The embedding operation
in steganography can be viewed as adding extremely low
amplitude noise to the cover. Therefore, it is wiser to model the
noise residuals instead of raw pixels in steganalysis. Such an
idea was initially proposed in [17] and was later adopted and
developed in several subsequent methods [18], [16], [15], [4].
For a test image X = (xij), a popular strategy in steganalysis
is to compute the noise residuals R = (rij) from a pixel
predictor:
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rij = Pred(N(xij))− lxij , (1)

where N(xij) is a set of neighboring pixels of xij , l ∈ N
is the residual order, and Pred(·) is the adopted predictor.
In practice, many steganalysis schemes [17], [19] implement
the predictor by convolving a finite impulse response filter K ′

with image X:

R = X ∗K ′ − lX = (rij) = (
∑
r,c

xrcij k
′rc − lxij), (2)

where ∗ denotes the convolution operator, and r, c are the
index of the kernel K ′. According to the distributive law, the
residuals above can be reformulated as:

R = X ∗K = (rij) = (
∑
r,c

xr,ci,jk
rc). (3)

There are plenty of choices for the filters (linear or non-
linear) in steganalysis, which can be used to generate different
residuals and capture different dependencies among neighbor-
ing pixels. The diversity of residuals is fundamental to the
success of the so-call rich media models (RM).

2) Feature extraction: This is critical in steganalysis. With
more discriminative features, it would be much easier to
distinguish cover images from stego ones. In this step, the
joint or conditional probability distributions of neighboring
residuals are modeled through histograms or co-occurrences.
For SRM and its several variants, the features are built on the
basis of fourth order co-occurrence matrixes. Take horizontal
co-occurrence for example, we have:

chd0d1d2d3
=

n1,n2−3∑
i,j=1

[ri,j+k = dk,∀k = 0, 1, 2, 3] · ϕ(βi,j)

dk ∈ {−Tq, (−T + 1)q, · · · , T q}

,

(4)

where [·] is Iverson bracket whose result is 1 when statement
inside is true and 0 otherwise. And ϕ(βi,j) is a statistical mea-
sure of the corresponding embedding probability. For different
versions of SRM, there are different values for ϕ(βi,j) :

ϕ(βi,j) =


1, SRM
max(2βi,j+k), k = 0, 1, 2, 3, maxSRM
[βij ≥ βthreshold], tSRM

. (5)

Note that the ϕ(βi,j)s in maxSRM and tSRM vary from one
place to another, indicating that both of them are selection-
channel-aware.

3) Binary classification: The final step of steganalysis is to
classify an image as a cover or a stego using an elaborately
designed classifier (support vector machine (SVM) or ensem-
ble classifier), which needs to be trained through supervised
learning prior to practical application.

B. Convolutional Neural Network Architecture

A convolutional neural network consists of one or several
convolutional layers, followed by some fully-connected layers
of neurons. The input and output of a convolutional layer are
sets of arrays called feature maps, while each convolutional
layer usually produces feature maps by a three-step process,
i.e., convolution, non-linear activation and pooling. The first
step performs some filtering using k kernels leading to k new
feature maps. Therefore, each kernel is applied on the existing
feature maps resulting from the previous layer. Let us denote
by Fn(X) the output feature map in layer n with the kernel
(filter) and bias defined by Wn and Bn, respectively, we have:

Fn(X) = pooling(fn(Fn−1(X) ∗Wn +Bn)), (6)

where F 0(X) = X is the input data, fn(·) is a non-linear
activation function that applies to each element of its input,
e.g., TanH or ReLU function, and pooling(·) represents the
pooling operation, including mean-pooling or max-pooling,
etc. Generally speaking, the non-linear activation and pooling
operation are optional in a specific layer. For a classification
problem, a complete network usually contains several cascaded
convolutional layers and ends with one fully-connected layer
followed by a softmax classifier.

Obviously, the three key steps in the framework of modern
steganalysis can be well simulated by a CNN model described
above. According to (3), the residual computation is actually
implemented through convolution which can be achieved by
a convolutional layer. The cascade of multiple convolutional
layers in a CNN can be trained to learn or extract high-level
and discriminative representation or features of the original
data, which explains the success of CNNs in many image
and video recognition problems, and that also coincides with
the objective of the feature extraction in steganalysis. As
for the classification step, the softmax classifier in CNN
acts like the SVM or ensemble classifier. In fact, a CNN
based steganalyzer would allow to automatically unify residual
computation, feature extraction and classification steps in one
unique architecture without any a prior feature selection and
to be optimized simultaneously as a whole framework.

III. THE PROPOSED CONVOLUTIONAL NEURAL NETWORK
FOR STEGANALYSIS

From the analysis in Section II, a CNN model is shown
to be able to well simulate the three key steps in the
framework of modern steganalysis. Therefore, it is not only
realistic but also attainable to develop image steganalyzer
via convolutional neural networks. However, the steganalysis
task is quite different from the ones in computer vision,
where the CNNs have made great success. The stego noise
to deal with in steganalysis usually cannot be perceived by
human perceptual system. In fact, with elaborately designed
steganographic schemes, the stego usually closely resembles
the cover not only visually but also statistically. As a result,
the feature representations in CNN based steganalyzer should
be a lot different than the ones in conventional CV tasks. In
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Fig. 2. The architecture of the proposed 10-layer convolutional neural network. For each convolutional layer, the input feature maps are the output of its
previous layer. The layers in the dotted box only exist in the selection-channel-aware version of the proposed network.

light of this, it is not surprising to find that a CNN with
random initialized weights usually cannot converge when it
is trained as a steganalyzer (see Table I). Therefore, some
customized designs specific to steganalysis are required in
order to incorporate the domain knowledge into the learning
of CNN based steganlyzer.

A. The Architecture

As illustrated in Fig. 2, the proposed CNN consists of
10 layers and ends with a fully-connected layer with a 2-
way softmax, which produces the distribution over 2 class
labels. Non-linear activation is applied after every convolu-
tion operation. And the pooling operations from 1st to 3th
layers are suppressed. Different from other conventional CNN
architectures that employ two or more fully-connected layers,
we use only one necessary 2-way fully-connected layer at the
end of our network. This is because the fully-connected layer
usually involves too many parameters to be trained, and this
could easily lead to overfitting, especially when the training
set is not big enough, which is the case for our task. Besides,
except the layers illustrated in Fig. 2, there is no other layer,
such as Local Response Normalization (LRN) [9], dropout
[9], Batch Normalization (BN) [20] or Local Contrast Nor-
malization (LCN) [21], used in the network. The components
inside the dotted box show the first two operations when the
knowledge of selection channel is explored, which will be
detailed in Section III-D. The depth and width of the network
and the size of filters are determined by experiments based on
the tradeoff between performance and model complexity.

We then proceed to discuss the naming conventions for
the CNN and the way we repeat our experiments on the
proposed models, which will be adopted throughout this paper.
For the network whose non-linear activation functions are
ReLUs, we call it ReLU-CNN, while if some of the activation
functions are replaced by the new introduced truncated linear
unit (TLU), which will be later elaborated in Section III-B, it is
referred as TLU-CNN. In addition, the TLU-CNN becomes its

Selection-Channel-Aware version SCA-TLU-CNN, when the
statistical measure of embedding probabilities is incorporated
in the network design. For all of the experiments on the
CNN models, we repeat the training and testing procedure
for three times using three different training/validation/test
sets. The final experimental results are obtained by averaging
three test results. Unless otherwise specified, the involved
networks for the experiments in this paper are trained with
resampled images on BOSS+BOWS2+AUG dataset and tested
with resampled images on BOSS test (see Section IV-B for
details).

For the rest of this Section, we elaborate several key tech-
niques employed in the design of our proposed convolutional
neural network.

B. Initialization with High-Pass Filters in SRM

As mentioned earlier in Section II, the computation of resid-
uals can be well simulated by a convolutional layer. Inspired
by this, we initialize the weights of the first convolutional
layer in our convolutional neural network with high-pass filter
kernels used in SRM instead of random values. Although such
strategy was also utilized in Qian et al.’s work [11], only the
“square 5× 5” filter in SRM was used to initialize their first
layer in the GNCNN model. According to our understanding,
the residuals in SRM help to improve the SNR (stego signal
to image content) and it is the combination of different filter
residual models that makes the success of the rich models
(RM) in steganalysis. Consequently, we propose to increase
the width of the first convolutional layer and initialize the
weights with the kernels of all the 30 basic linear filters
(the “spam” filters and their rotated counterparts) used in
calculating residual maps in SRM.

The basic filters above correspond to 7 residual classes in
SRM, which include 8 filters in class “1st”, 4 in class “2nd”,
8 in class “3rd”, 1 in class “SQUARE 3 × 3”, 1 in class
“SQUARE 5 × 5”, 4 in class “EDGE 3 × 3” and 4 in class
“EDGE 5 × 5”, for a total of 30 basic filters with maximum
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TABLE I
THE PERFORMANCE OF DIFFERENT INITIALIZATION STRATEGIES OF THE

FIRST CONVOLUTIONAL LAYER IN TERMS OF DETECTION ERROR (PE )
FOR RELU-CNN AND TLU-CNN(T = 3) ON THREE STEGANOGRAPIC

SCHEMES AT A PAYLOAD OF 0.2 BPP ON RESAMPLED IMAGES. THE
INVOLVED NETWORKS ARE TRAINED ON BOSS+BOWS2+AUG AND

TESTED ON BOSS TEST.

Algorithm Model Random Fixed Learned

WOW ReLU-CNN 0.5 0.2259 0.2136
TLU-CNN 0.5 0.2261 0.1982

S-UNIWARD ReLU-CNN 0.5 0.2968 0.2937
TLU-CNN 0.5 0.2807 0.2540

HILL ReLU-CNN 0.5 0.2980 0.2971
TLU-CNN 0.5 0.3068 0.2761

kernel size of 5 × 5. Therefore, we set the kernel size of
weighting matrix in the first convolutional layer of our CNN
all to 5 × 5 as shown in Fig. 2. Let W 5×5

CNN and Wm×n
SRM be

the weight matrix and filter kernel in SRM, respectively, we
initialize the central part of WCNN with WSRM and leave the
remaining elements of WCNN to be zeros. In another word, we
pad Wm×n

SRM to be the W 5×5
CNN with zeros. It is worth noting that

for all the SRM filters, we do not normalize them by dividing
the residual orders l in formula (1).

The above initialization strategy acts as a regularization term
in machine learning, which dramatically narrows down the
feasible parameter space and helps to facilitate the convergence
of the network. Besides, these high-pass filters make our
network concentrate on the embedding artifacts introduced by
steganography rather than the complex image content. To the
best of our knowledge, all of the CNN models that are trained
for steganalysis adopt a similar initialization strategy [11] [13]
[22].

However, the initialization with the 30 SRM filters in the
first layer serves as a good starting point for the network
training but not the best end point. According to our exper-
iments (see Table I), keeping these filters unchanged during
training usually leads to worse results than updating them. As
a result, all the filters in the first convolutional layer should
be optimized through training together with other parameters
in the network.

C. Truncated Linear Unit

1) Motivation: The activation function f(·) : R → R
introduces non-linearity to neural networks, which can signifi-
cantly increase the capability of feature representation. Various
choices are possible for f(·), such as the conventional sigmoid
and hyperbolic tangent function, or the recently emerged
ReLU (Rectified Linear Unit) function. Among them, ReLU
is a notable choice for the convolutional layer in CNN and it
can be formulated as

f(x) =

{
0, x < 0

x, x ≥ 0
. (7)

The ReLU function has been successfully applied to a wide
variety of tasks in CV. For CV tasks, e.g., object classification,
the target object can usually be distinguished easily from the

background. In another word, the signals in such tasks are of
high SNR. Under this circumstance, applying ReLU to neurons
can make them selectively respond to useful signals in the
input, resulting the so-called sparse features. Both theoretical
and empirical arguments show that sparse representations are
more likely to be linearly separable and have better generaliza-
tion ability [23]. However, the picture is completely different
for our task in steganalysis. The steganographic embedding
procedure can be viewed as adding low-amplitude additive
noises to cover images. And the embedding signals have
much low amplitude compared to the image content, which
means extremely low SNR. In contrast to CV tasks or some
high SNR applications, where the ReLU function can well
adapt to the distributions of the object signals, the activation
function adopted in steganalysis should take into account the
structure of the embedding signals, especially in the first sev-
eral convolutional layers. Notice that in image steganography,
the embedding signals are usually in the range of [-1,1], a
new activation function known as truncated linear unit (TLU),
which is slightly modified from ReLU, is introduced in our
proposed CNN and defined as follows:

f(x) =


−T, x < −T
x, −T ≤ x ≤ T
T, x > T

, (8)

where T > 0 is the parameter determined by experiments.
In the proposed CNN, the weighting kernels in the first

convolutional layer are initialized with the basic high-pass
filters in SRM, which contributes to the suppression of image
content and extraction of embedding signals. The utilization of
TLU in the outputs of the first convolution operation helps to:
(1) adapt to the distribution of embedding signals (with low
SNR); and (2) enforce the CNN to learn more effective high-
pass filters in the first layer. According to our experiments, for
other layers of the CNN based steganalyzer, the distributions
of the input signals tend to be more consistent with the ones in
conventional CV tasks. Therefore, the ReLU function is more
preferable in those layers.

2) Experimental Verification and Analysis: We then pro-
ceed to verify the effectiveness of TLU in steganalysis and
determine the proper T through experiments. In addition, we
also try to explain the function of TLU with the help of
visualization tools.

We conducted the comparisons based on the deep convo-
lutional model shown in Fig. 2. The CNN with ReLU as
activation function in all its layers, i.e., ReLU-CNN, is trained
as the baseline model. The TLU-CNN with ReLU replaced
by TLU in its first convolutional layer is also adopted for
comparison.

Both ReLU-CNN and TLU-CNN with different T are
trained for HILL, S-UNIWARD and WOW, at the payload
of 0.2 bpp. The experimental results are summarized in Table
II.

It is observed that, for all the three involved steganographic
schemes, the TLU-CNN achieves consistently better perfor-
mance in terms of detection error than the baseline ReLU-
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TABLE II
THE PERFORMANCE OF RELU AND TLU ON RESAMPLED IMAGES IN TERMS OF DETECTION ERROR (PE ) WITH DIFFERENT T SETTINGS. INVOLVED

NETWORKS ARE TRAINED ON BOSS+BOWS2+AUG AND TESTED ON BOSS TEST. THE EMBEDDING PAYLOAD IS 0.2 BPP.

Algorithm ReLU
TLU

T = 3 T = 7 T = 15 T = 63 T =∞

WOW 0.2136 0.1982 0.1966 0.2142 0.2139 0.2170

S-UNIWARD 0.2937 0.2540 0.2624 0.2653 0.2921 0.2990

HILL 0.2971 0.2761 0.2812 0.2894 0.2956 0.2955

Epoch
0 5 10 15 20 25 30 35 40

T
ra

in
in

g 
Lo

ss

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
ReLU
TanH
TLU(T=3)
SCA-TLU

Fig. 3. The convergence performance for training the four involved
10-layer CNN models against S-UNIWARD at 0.2 bpp on resampled
BOSS+BOWS2+AUG images. Normalization of the initial high-pass filters
is necessary for training with TanH unit. Except for the first layer, all the
activation functions are ReLUs.

CNN for most of the tested parameter values, with the best
performance obtained when T = 3 or T = 7. With increasing
value of T , the effect of TLU to suppress image content
gradually decreases, leading to the loss in performance. Note
that in the extreme case when T = ∞, TLU becomes an
identity function (linear activation function). It is interesting
to see that, even with the linear activation function which
will decrease the non-linearity, the TLU-CNN can still have
comparable performance to ReLU-CNN. This may result from
the effect of ReLU which sets all the negative inputs to be
zeros, leading to about 50% information loss in the embedding
signals.

As an added bonus, it is also observed that the TLU-CNN
can be trained much faster than its counterparts with ReLU
and TanH unit. The convergence performance when training
the three involved networks (TLU with T = 3, ReLU and
TanH) is illustrated in Fig. 3, which shows the evolution of
training error versus the number of epochs on the training
images, obtained for S-UNIWARD at 0.2 bpp. The TLU
is specifically designed according to the distribution of the
embedding signals. Therefore, it is able to make better use of
the information to train the network more efficiently.

To better illustrate the superiority of the TLU-CNN for ste-
ganalysis, we then visualize the filters in the first convolutional
layer trained with TLU and ReLU, respectively. Fig. 4 (a) and

(b) show the visualizations of filters (30 filters in total) in the
first convolutional layers with ReLU and TLU (T = 3). It is
clear to see that the adoption of TLU results in more distinctive
features and fewer “dead” filters (filters corresponding to the
feature boxes that are almost pure white). Note that although
the learnt filters have similar shapes with the original SRM
filters, they actually have different values. From the results in
Table I, it can be easily verified that the network can indeed
fine-tune the SRM filters in the first layer.

It is also interesting to evaluate the performance of the
proposed CNN based steganalyzer when the ReLUs in first
couple of layers are replaced by TLUs. The network is named
as TLU n if the ReLUs in its first n convolutional layers
are replaced by TLUs and the ReLUs in other layers remain
unchanged. As shown in Table III, despite of the similar results
from TLU 1 to TLU 3, the detection accuracy becomes worse
from TLU 4 and beyond. This is because when the network
becomes deeper, the distribution of TLU output tends to be
consistent with the one of ReLU. Therefore it is preferable to
use ReLUs in relatively deep convolutional layers. Considering
that the computation of ReLU can be accelerated by CuDNN
library and TLU 3 needs more training epochs, we choose
TLU 1 as the TLU-CNN model in our implementation so
as to achieve a good compromise between training time and
detection performance.

TABLE III
THE PERFORMANCE ON RESAMPLED IMAGES IN TERMS OF DETECTION
ERROR (PE ) OF OUR CNN MODEL WHEN THE FIRST SEVERAL RELUS

ARE REPLACED BY TLUS(T = 3). INVOLVED NETWORKS ARE TRAINED
ON BOSS+BOWS2+AUG AND TESTED ON BOSS TEST. THE

EMBEDDING PAYLOAD IS 0.2 BPP.

TLU 1 TLU 2 TLU 3 TLU 4 TLU 5

S-UNIWARD 0.2540 0.2409 0.2389 0.2660 0.2851

D. Incorporating the Knowledge of Selection Channel

1) Problem Formulation: According to Kerckhoffs’s prin-
ciple [24] from cryptography, to evaluate the security per-
formance of a steganographic scheme, each element of the
scheme (embedding, detection, etc) should be declared pub-
lic except for the secret key. For image steganography, the
probability of each pixel being modified, i.e., the so-called
selection channel, when executing embedding could also be
known by the steganalyst. By incorporating the knowledge
of selection channel, the performance of steganalyzers against
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(a) (b) (c)

Fig. 4. Visualizations of 1st convolutional layer filters in 3 different models. (a) Filters in ReLU-CNN. (b) Filters in TLU-CNN (T = 3). (c) Filters in
SCA-TLU-CNN. Using TLU non-linearity and incorporating the knowledge of selection channel can result in more distinctive filters and fewer “dead” filters.

modern content-adaptive steganographic schemes is expected
to be improved. For those recently proposed selection-channel-
aware SRM feature sets, e.g., tSRM, maxSRM and σSRM
[25], some statistical measures of the embedding probabilities
are accumulated when calculating the co-occurrences or his-
tograms of the corresponding residuals. For our CNN model,
however, we do not explicitly compute the co-occurrences
or histograms. Therefore, we have to find another way to
exploit the embedding probabilities in the design of CNN
based steganalyzer.

Inspired by the work in [25], we choose to take the upper
bound of the expectation of L1 norm of the residual distortion
as the statistical measure of selection channel. For a cover
image X = (xij), and the corresponding stego Y = (yij), we
denote the difference between stego and cover by

N = Y −X = (yij − xij) = (nij). (9)

For most of the existing steganographic schemes, a pixel xij
is modified into xij +1 and xij − 1 with the same probability
βij , we then have nij ∈ {−1, 0, 1} with probability {βij , 1−
2βij , βij}, therefore,

E[nij ] = 0, E[|nij |] = 2βij . (10)

Recall that residuals can be computed by convolutions with
high-pass filters. For filter kernel K, the residual distortion
can be formulated as:

D = K ∗ Y −K ∗X = K ∗ (Y −X)

= K ∗N =
∑
r,c

krcnrcij = (dij) , (11)

where r, c are the index of the filter kernel. And it is easy to
verify that:

E[dij ] =
∑
r,c

krc · E[nrcij ] = 0. (12)

To make use of the selection channel, the standard deviation
Std[dij ] or the expectation of the L1 norm of dij seems to be
a natural choice:

Std[dij ] =

√
2
∑
r,c

(krc)2βrc
ij

E[|dij |] = E[|
∑
r,c

krcnrcij |]
, (13)

where βij is the embedding probability for xij . Note the
fact that the computation of both Std[dij ] and E[|dij |] is not
computationally efficient on a GPU platform, we then turn to
resort to the upper bound of E[|dij |] for the statistical measure
of embedding probabilities:

ϕ(βij) = 2
∑
r,c

|krc| · βrc
ij = E[

∑
r,c

|krc| · |nrc
ij |]

≥ E[|
∑
r,c

krcnrcij |] = E[|dij |]
. (14)

The ϕ(βij) above can be easily obtained by convolving the
probability map P = (pij) = (2βij) with the absolute value of
the residual filter K. Therefore, the upper bound map for the
L1 norm of the residual distortion dij , i.e., ϕ(P ) is obtained:

ϕ(P ) = P ∗ |K|. (15)

We then try to take advantage of the selection channel in
the design of a convolutional neural network. For maxSRM
[6] and σSRM [25], the statistical measure of probabilities are
accumulated in the bins of co-occurrences as the final features.
Therefore, we should also try to propagate the computed ϕ(P )
through the whole network and make it contribute to the
final features extracted by the CNN. There are two simple
ways that can achieve this. One is applying an elementwise
summation between ϕ(P ) and the output feature maps of
the first convolutional layer, and the other is applying an
elementwise multiplication. Our experimental results indicated
that the elementwise summation approach always performs
much better than the elementwise multiplication. It is most
likely that with elementwise multiplication, the distribution
of the output feature maps in the first layer (act as the
residuals in SRM) will be changed too much, which inhibits
to a great extent the feature extraction in the subsequent
layers. Therefore, the elementwise summation is adopted in
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our network and the output of the second convolutional layer
then becomes (refer to (6)):

F 2(Z) = f2((F 1(Z) + ϕ(P )) ∗W 2 +B2)

= f2(F 1(Z) ∗W 2 +B2 + ϕ(P ) ∗W 2)
. (16)

Note that, for our proposed CNN, except for the first
convolutional layer, the non-linear activation functions in other
layers are ReLUs, which means that for neurons that are
activated in the second layer, their outputs can be expressed
as:

F 2(Z)activated = (F 1(Z) ∗W 2 +B2) + ϕ(P ) ∗W 2, (17)

where the first term above is the original output of the neuron
and the second one can be regarded as a weighted sum of
the statistical measure of selection channel. Recall that, for
the activated neurons, the ReLU is a linear operator, thus
the outputs Fn(Z)activated of the nth layer can also be
factorized into two terms as the one in (17), and the effect of
the statistical measure is accumulated hierarchically through
the forward propagation along the network. As a result, the
obtained features, or the input of the fully-connected softmax
classifier (see Fig. 2), are the combination of features from
two separate sources, one of which is extracted from the test
image and the other from the selection channel of the same
image. Note that according to (15), the statistical measure
ϕ(P ) is computed based on the learnt filter K, and therefore,
during training, ϕ(P ) does not participate in back propagation
to update filter K.

2) Experimental Verification and Analysis: We then pro-
ceed to conduct several experiments to verify the effective-
ness of the CNN based steganalyzer when the knowledge of
selection channel is properly utilized. In our experiments, the
SCA-TLU-CNN stands for the network that makes use of
selection channel. First, the SCA-TLU-CNN can be trained
more efficiently when incorporated with the information of
selection channel as illustrated in Fig. 3. It is also observed
that the SCA-TLU-CNN can learn more effective filters as
shown in Fig. 4 (c), where the filters in the first convolutional
layer of SCA-TLU-CNN are more distinct than the ones of
TLU-CNN and ReLU-CNN, and there are no “dead” filters
any more.

Moreover, compared to the TLU-CNN, the detection error
can also be further decreased as expected. Table IV shows
the performance comparison between these two CNN models
against three state-of-the-art content-adaptive steganographic
schemes, i.e, S-UNIWARD, HILL, and WOW at 0.2 bpp. It
is clear to see that there is about 3% decrease in terms of
detection error for all the involved embedding schemes.

E. Curriculum Learning for Low Payload Steganalysis

Nowadays it is still quite challenging to distinguish cover
images from stego ones that are generated by some state-
of-the-art steganographic schemes at very low payload, e.g.,
0.1 bpp or below. In fact, we found that the proposed CNN

TABLE IV
THE DETECTION ERROR (PE ) OF TLU-CNN AND ITS

SELECTION-CHANNEL-AWARE COUNTERPART SCA-TLU-CNN. THE
EMBEDDING PAYLOAD IS 0.2 BPP. IMAGES (BOSS+BOWS2+AUG) ARE

RESIZED TO 256× 256.

Algorithms TLU-CNN SCA-TLU-CNN

WOW 0.1982 0.1691
S-UNIWARD 0.2540 0.2224

HILL 0.2761 0.2538

described in Fig. 2 usually cannot converge if we train
the network from scratch on those images with very low
embedding rate. In our work, however, the issue above can
be well solved by adopting a curriculum learning [26] or
transfer learning strategy [27]. It benefits from the observation
that humans can learn much better when the examples are
not randomly presented but organized in a meaningful order
which illustrates gradually more complex concepts. To put the
strategy into practice, we train the network from easy aspects
of the steganalysis task, and gradually increase the difficult
level. In another word, we first train a network on a dataset
generated at a higher embedding rate and then fine-tune it
on another dataset generated at a relatively low embedding
rate, and so on. Unless otherwise specified, the results on
low payload steganalysis (0.1 bpp and 0.05 bpp), which are
presented later in Section IV, are all based on the CNN models
trained with the strategy of curriculum learning. For instance,
to train a steganalyzer at 0.1 bpp, we first train a model from
scratch on dataset at 0.2 bpp, then fine-tune the final model
on dataset at 0.1 bpp. And similarly, the model at 0.05 bpp
is obtained based on the final model at 0.1 bpp and so on.
Note that this curriculum learning strategy also applies to the
training of networks with images generated by subsampling
(detailed in Section IV-B).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this Section, extensive experiments are carried out to
demonstrate the feasibility and effectiveness of our proposed
CNN model. We compare our model with the state-of-the-art
hand-crafted feature set SRM and its selection-channel-aware
variant maxSRMd2. For fair comparison, all the involved
steganalysis methods are tested on the same datasets.

A. The Steganographic Schemes

In our experiments, several state-of-the-art content-adaptive
steganographic methods in the spatial domain, e.g., S-
UNIWARD, WOW and HILL, are employed to evaluate the
performance of the involved steganalyzers. And all the embed-
ding algorithms are implemented with STC simulator based on
the publicly available codes. Note that in our implementation,
instead of the C++ code version of the simulator tools (S-
UNIWARD, WOW) with fixed embedding key, we use the
ones in Matlab code with random embedding key. This is
because we found in our experiments that, although the
CNN based steganalyzer could achieve extraordinary detection
performance (say, detection error is less than 0.1 for WOW
in 0.2 bpp) if the CNN was trained on dataset generated by
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simulator with a fixed embedding key, its performance would
decrease dramatically (detection error is close to 0.5) when
the test dataset was generated using another embedding key.In
another word, the trained CNN was overfitted to the specific
embedding key in training set and had no generalization
capability at all. The similar problem was also reported in
[22], where the authors made use of the same embedding key
to create stego images for training.

B. The Datasets and Data Augmentation

In this paper, the involved experiments are carried out on
two image sources. The first comes from the BOSSbase 1.01
[12], which contains 10,000 512×512×8-bit grayscale images
with different texture characteristics and is widely used in
steganalysis. The other one is BOWS2 [28], which is used
for BOWS2 contest and consists of downsampled and cropped
natural and grayscale images of size 512× 512× 8-bit. Con-
strained by our available GPU computing platform, conducting
experiments on full resolution images of 512 × 512 pixels
can be extremely time consuming. As a result, we decide to
evaluate the performance of our CNN based steganalyzer on
test images of 256× 256 pixels. To this end, we generated 3
image datasets from both image databases above in different
ways as described below:

a) resample all the images into the size of 256× 256 pixels
(using “imresize()” in Matlab with default settings);

b) crop the central part of the original images into size of
256× 256 pixels;

c) subsample the original images to 256× 256 by skipping
every other pixels.

For each image dataset, we then prepared 3 training sets
and 1 testing set separately as follows:

1) training set BOSS: it contains 5,000 images randomly
selected from BOSSbase (including 1,000 randomly se-
lected images as validation set);

2) training set BOSS+BOWS2: it contains the images in
training set BOSS and another 10,000 images from
BOWS2;

TABLE V
DETECTION ERROR (PE ) OF THREE STEGANALYSIS SCHEMES TRAINED
ON DIFFERENT DATASETS AND TESTED ON BOSS TEST OF RESAMPLED

IMAGES, FOR WOW AT 0.2 BPP.

Algorithms BOSS BOSS+BOWS2 BOSS+BOWS2+AUG

SRM 0.3266 0.3228 N/A
maxSRMd2 0.2424 0.2325 N/A
TLU-CNN 0.3364 0.2693 0.1982

TABLE VI
DETECTION ERROR (PE ) OF THREE STEGANALYSIS SCHEMES TRAINED

ON DIFFERENT DATASETS AND TESTED ON BOSS TEST OF CROPPED
IMAGES, FOR WOW AT 0.2 BPP.

Algorithms BOSS BOSS+BOWS2 BOSS+BOWS2+AUG

SRM 0.3865 0.3853 N/A
maxSRMd2 0.3075 0.3092 N/A
TLU-CNN 0.4205 0.3512 0.2808

TABLE VII
DETECTION ERROR (PE ) OF THREE STEGANALYSIS SCHEMES TRAINED

ON DIFFERENT DATASETS AND TESTED ON BOSS TEST OF SUBSAMPLED
IMAGES FOR WOW AT 0.8 BPP.

Algorithms BOSS BOSS+BOWS2 BOSS+BOWS2+AUG

SRM 0.2300 0.2332 N/A
maxSRMd2 0.1813 0.1807 N/A
TLU-CNN 0.1991 0.1569 0.1182

3) training set BOSS+BOWS2+AUG: it is obtained by
performing some label-preserving transformations,
such as transposing and rotating, on the images
in BOSS+BOWS2, which increases the size of
BOSS+BOWS2 training set by a factor of 8;

4) testing set BOSS test: it contains the remaining 5,000
images in BOSSbase other than the ones in training set
BOSS.

For CNN based steganalysis, it is preferable to adopt a larger
training set to avoid overfitting. Tables V - VII summarizes
the performance of our CNN based steganalyzer and other two
competing steganalysis schemes trained on different training
sets and tested on BOSS test of resampled, cropped and sub-
sampled images respectively, for WOW at 0.2 or 0.8 bpp. It is
observed that, the proposed TLU-CNN suffers from substantial
overfitting when it is trained on BOSS. Its performance is
improved to a certain degree when the training set is replaced
with BOSS+BOWS2. And the best performance is achieved if
we train the network using BOSS+BOWS2+AUG. However,
things are different for the involved hand-crafted feature sets,
e.g., SRM and maxSRMd2. For resampled images, the better
choice is BOSS+BOWS2. But for cropped and subsampled im-
ages, there is no clear difference in performance on BOSS and
BOSS+BOWS2. The experiments for SRM and maxSRMd2
on BOSS+BOWS2+AUG are pointless because these features
are already symmetrized. The rotated or mirrored images will
cause duplicated features and singular matrices in the base
FLD learners of the ensemble classifer. Therefore, for the im-
age dataset adopted in this paper and in the interest of fairness,
the training set for SRM and maxSRMd2 is BOSS+BOWS2,
while our CNN models use the BOSS+BOWS2+AUG. And
the performance of all involved schemes is evaluated on
BOSS test described above. For repeating the experiments,
we create three different training sets and test sets. Every
CNN model will be trained independently on the three training
sets using the same hyper-parameters and tested on their
associated test sets. Then the test results are averaged as the
final performance of this model.

C. Implementation Details

We implemented the proposed CNN models using Caffe
[29] with necessary modifications. It is worth noting that,
instead of SGD, we use AdaDelta [30] to train our networks
as we found in our early experiments that with AdaDelta the
networks can learn much faster and achieve better results.
Accordingly, all the following parameters we described are
based on AdaDelta: the mini-batch size is 32, which contains
16 pairs of cover and stego images; the momentum value is
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0.95 and the weight decay is 5× 10−4; the “delta” parameter
for AdaDelta is 1 × 10−8. Data augmentation is conducted
during training and the same rotated or mirrored operation
is applied to a pair of images within a mini-batch. “Xavier”
initialization [31] is used to initialize the weights from 2nd
to 9th layers and their initial biases are set to be 0.2. The
last fully-connected layer is initialized with random values
obtained from a Gaussian source of zero mean and standard
deviation 0.01 and the initial bias is set to be zero. Based on
the above settings, the networks are then trained to minimize
the cross-entropy loss.

During training, we use the “multistep” policy in Caffe to
adjust the learning rate. When the training iteration is equal
to one of the specified step values, the learning rate will
be divided by 5. Take TLU-CNN for WOW at 0.2 bpp on
resampled images as an example, with an initial value of
0.4, the learning rate will be decreased to 0.08, 0.016 and
0.0032 at iterations 500,000, 600,000 and 650,000 respective-
ly1. Note that with different embedding schemes at different
payloads, we are actually training the CNNs for tasks of
varying difficulties, which means that different configurations
should be applied to control the learning rate. Owing to space
constraints, it is impractical for us to give all the step values
for each involved CNN models. As an alternative, we turn to
elaborate the rules on how to determine those step values. The
key to tackling the problem lies in monitoring the error and
accuracy on the validation set during training. When neither
the error decreases nor the accuracy increases, the learning
rate should be changed. A similar policy was also adopted
in [9] and [32]. Note that for each model, we create three
different training/validation/test sets using the way described
in Section IV-B and choose the step values for this model from
the first trining/validation set under the rules described above.
The same step values are used when training on the other two
training sets.

For TLU-CNN models corresponding to resampled and
cropped images at payloads from 0.2 to 0.5 bpp and subsam-
pled images at 0.8 bpp, the network parameters are trained
from scratch and are stopped at 100 epochs with an initial
learning rate of 0.4. The strategy of curriculum learning is
applied to train the models corresponding to other stego
images at lower embedding rates, to be specific, the resampled
and cropped images at payloads from 0.05 to 0.1 bpp, and
the subsampled images at payloads from 0.05 to 0.5 bpp,
where the networks are fine-tuned from their previous trained
ones with an initial learning rate of 0.05. All the fine-tuning
procedures will be stopped at 35 epochs except for the training
of subsampled images at 0.5 bpp, which will be stopped at 70
epochs.

D. Comparison with the state-of-the-art Steganalyzers in Spa-
tial Domain

In this subsection, we compare the performance of the
proposed CNN-based models with two state-of-the-art stegan-
alyzers in spatial domain, i.e., SRM and maxSRMd2, for a

1These values correspond to the repeated “stepvalue” in Caffe when using
“multistep” policy.

wide variety of payloads. Tables VIII-X show the performance
comparison in terms of detection error (PE) for all the tested
schemes on resampled, cropped and subsampled images. In
Fig. 5 to Fig. 7, we further illustrate the detection errors
of three state-of-the-art steganographic schemes in spatial
domain, i.e., WOW, S-UNIWARD and HILL, as a function
of payload (ranging from 0.05 bpp to 0.5 bpp), for all the
involved steganalyzers on all the 3 image datasets.

It is observed in Fig. 5 to Fig. 7 that, the proposed TLU-
CNN and SCA-TLU-CNN consistently outperform the other
two hand-crafted rich models by a clear margin, irrespective
of the embedding method, payload and image dataset (re-
sampled, cropped and subsampled). On one hand, when the
knowledge of selection channel is not incorporated, our TLU-
CNN model can achieve significant performance gains over
SRM for the involved embedding schemes, tested payloads
and image datasets. This is particularly evident for resampled
and subsampled images. For instance, in contrast to SRM, the
TLU-CNN decreases the detection error of WOW by 12.46%
on the resampled images when payload is 0.2 bpp as shown
in Fig. 5 (a). It is also shown in Fig. 6 that the performance
gain of TLU-CNN decreases somewhat for cropped images.
This is because the cropped central images are usually the
most complex regions of the original images, which makes the
detection of stego images more difficult for both CNN based
and hand-crafted steganalyzers. On the other hand, for those
selection-channel-aware schemes, our SCA-TLU-CNN model
also convincingly outperforms the maxSRMd2 as shown in
Fig. 5 to Fig. 7, and the performance gap becomes most
pronounced for S-UNIWARD at 0.3 bpp on the resampled
images, where the detection error is decreased by 10.4%. It
is believed that the regularization for initialization with the
high-pass filters in SRM, the use of TLU non-linearity and the
unified optimization framework of the CNN model contribute
much to the superior performance of CNN based staganalyzers
over the conventional heuristic feature sets.

It is worth noticing that, although the TLU-CNN does
not explicitly take advantage of the selection channel, it still
defeats the selection-channel-aware maxSRMd2 algorithm in
most cases. This surprising result shows that the proposed
TLU-CNN is able to learn the distribution of selection channel
for a specific embedding scheme implicitly, if it is trained
on a sufficient large and diverse training set. It may explain
the reason why the SCA-TLU-CNN does not outperform
much its non-selection-channel-aware version TLU-CNN. It is
also observed that, although the SCA-TLU-CNN consistently
works better than TLU-CNN, the performance tends to be
more and more similar at high payloads, especially for WOW
and S-UNIWARD on resampled images as shown in Fig. 5 (a)-
(b). This is because, with the increase of data payload, both the
WOW and S-UNIWARD become less adaptive, and therefore,
the SCA-TLU-CNN could not exemplify its advantage in
the knowledge of selection channel. For HILL, however, the
adoption of a series of filtering operations allows it to exhibit
some “adaptivity” at different payload, which contributes to
the superior performance of SCA-TLU-CNN over TLU-CNN
at high data payload, especially on resampled and subsampled
images.
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TABLE VIII
PERFORMANCE COMPARISON OF THE INVOLVED STEGANALYZERS IN TERMS OF DETECTION ERROR (PE ) FOR 3 STATE-OF-THE-ART STEGANOGRAPHIC

SCHEMES AT DIFFERENT PAYLOADS ON RESAMPLED IMAGES.

Algorithm Payload SRM TLU-CNN maxSRMd2 SCA-TLU-CNN
(bpp) (PE ) (PE ) (PE ) (PE )

WOW

0.05 0.4551 0.3850 0.3810 0.3450
0.1 0.4066 0.3000 0.3163 0.2442
0.2 0.3228 0.1982 0.2325 0.1691
0.3 0.2633 0.1394 0.1918 0.1229
0.4 0.2127 0.1109 0.1536 0.0959
0.5 0.1800 0.0938 0.1331 0.0906

S-UNIWARD

0.05 0.4641 0.4200 0.4316 0.4000
0.1 0.4232 0.3350 0.3806 0.3220
0.2 0.3437 0.2540 0.2999 0.2224
0.3 0.2798 0.1772 0.2542 0.1502
0.4 0.2260 0.1410 0.2136 0.1281
0.5 0.1848 0.1003 0.1732 0.1000

HILL

0.05 0.4765 0.4150 0.4409 0.4000
0.1 0.453 0.3560 0.3894 0.3380
0.2 0.3811 0.2761 0.3226 0.2538
0.3 0.3236 0.2145 0.2804 0.1949
0.4 0.2818 0.1782 0.2410 0.1708
0.5 0.2363 0.1561 0.2115 0.1305

TABLE IX
PERFORMANCE COMPARISON OF THE INVOLVED STEGANALYZERS IN TERMS OF DETECTION ERROR (PE ) FOR 3 STATE-OF-THE-ART STEGANOGRAPHIC

SCHEMES AT DIFFERENT PAYLOADS ON CROPPED IMAGES.

Algorithm Payload SRM TLU-CNN maxSRMd2 SCA-TLU-CNN
(bpp) (PE ) (PE ) (PE ) (PE )

WOW

0.05 0.4772 0.4139 0.4199 0.3874
0.1 0.4460 0.3488 0.3730 0.3240
0.2 0.3853 0.2808 0.3092 0.2435
0.3 0.3337 0.2450 0.2686 0.2036
0.4 0.2887 0.2044 0.2361 0.1707
0.5 0.2496 0.1680 0.2041 0.1445

S-UNIWARD

0.05 0.4750 0.4460 0.4571 0.4390
0.1 0.4439 0.4040 0.4206 0.3938
0.2 0.3823 0.3318 0.3614 0.3218
0.3 0.3287 0.2850 0.3132 0.2571
0.4 0.2805 0.2374 0.2721 0.1955
0.5 0.2411 0.1959 0.2355 0.1660

HILL

0.05 0.4845 0.4540 0.4536 0.4325
0.1 0.4618 0.4129 0.4211 0.3806
0.2 0.4129 0.3494 0.3638 0.3288
0.3 0.3645 0.3018 0.3253 0.2885
0.4 0.3236 0.2470 0.2874 0.2291
0.5 0.2810 0.2100 0.2520 0.1977
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Fig. 5. Detection errors PE of 3 state-of-the-art steganographic schemes as a function of payload for the involved steganalysis methods.Images are resized
to 256× 256. (a) WOW. (b) S-UNIWARD. (c) HILL.
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TABLE X
PERFORMANCE COMPARISON OF THE INVOLVED STEGANALYZERS IN TERMS OF DETECTION ERROR (PE ) FOR 3 STATE-OF-THE-ART STEGANOGRAPHIC

SCHEMES AT DIFFERENT PAYLOADS ON SUBSAMPLED IMAGES.

Algorithm Payload SRM TLU-CNN maxSRMd2 SCA-TLU-CNN
(bpp) (PE ) (PE ) (PE ) (PE )

WOW

0.05 0.4831 0.4176 0.4254 0.3916
0.1 0.4592 0.3622 0.3788 0.3333
0.2 0.4171 0.2900 0.3176 0.2585
0.3 0.3797 0.2391 0.2796 0.2070
0.4 0.3443 0.2077 0.2523 0.1691
0.5 0.3132 0.1812 0.2335 0.1547

S-UNIWARD

0.05 0.4893 0.4541 0.4662 0.4452
0.1 0.4722 0.4283 0.4347 0.4020
0.2 0.4323 0.3618 0.3842 0.3307
0.3 0.3949 0.3137 0.3416 0.2814
0.4 0.3544 0.2872 0.3120 0.2387
0.5 0.3213 0.2226 0.2881 0.1988

HILL

0.05 0.4948 0.4697 0.4761 0.4551
0.1 0.4840 0.4430 0.4592 0.4140
0.2 0.4629 0.3940 0.4269 0.3632
0.3 0.4416 0.3490 0.3998 0.3216
0.4 0.4146 0.3245 0.3747 0.2877
0.5 0.3859 0.2950 0.3541 0.2596
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Fig. 6. Detection errors PE of 3 state-of-the-art steganographic schemes as a function of payload for the involved steganalysis methods.Images are cropped
into 256× 256. (a) WOW. (b) S-UNIWARD. (c) HILL.
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Fig. 7. Detection errors PE of 3 state-of-the-art steganographic schemes as a function of payload for the involved steganalysis methods. Images are subsampled
to 256× 256. (a) WOW. (b) S-UNIWARD. (c) HILL.
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V. CONCLUSION

The paradigm of modern steganalyzer mainly consists of
three steps, i.e., residual computation, feature extraction and
binary classification. In this paper, we propose a CNN based
steganalyzer, which is shown to be able to well simulate and
optimize these key steps in a unified network architecture. The
proposed CNN has a quite different structure compared to the
ones designed for CV tasks, and is capable of detecting several
state-of-the-art steganographic schemes in spatial domain for
a wide variety of payloads with high accuracy. Instead of a
random strategy, the weights in the first layer of the proposed
CNN are initialized with the basic high-pass filters used in
computation of residual maps in SRM, which helps to find
a better local minima as a regularizer. Considering that the
embedding signals usually have an extremely low SNR, a set
of hybrid activation functions is adopted in our CNN model,
where, in addition to the conventional ReLU function, a new
function called truncated linear unit (TLU) is introduced to the
first few layers of our network to well adapt to the distribution
of the embedding signals. And finally, the performance of
the proposed CNN is further boosted by incorporating the
knowledge of selection channel. Extensive experiments have
been carried out, which demonstrates the superior performance
of the proposed CNN based steganalyzer over other state-of-
the-art steganalysis methods.
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