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Abstract— Driven by the rapid development of Internet and
digital technologies, we have witnessed the explosive growth of
Web images in recent years. Seeing that labels can reflect the se-
mantic contents of the images, automatic image annotation, which
can further facilitate the procedure of image semantic indexing,
retrieval and other image management tasks, has become one of
the most crucial research directions in multimedia. Most of the
existing annotation methods heavily rely on well-labeled training
data (expensive to collect) and/or single view of visual features
(insufficient representative power). In this paper, inspired by the
promising advance of feature engineering (e.g., CNN feature
and SIFT feature) and inexhaustible image data (associated
with noisy and incomplete labels) on the Web, we propose an
effective and robust scheme, termed Robust Multi-view Semi-
supervised Learning (RMSL), for facilitating image annotation
task. Specifically, we exploit both labeled images and unlabeled
images to uncover the intrinsic data structural information.
Meanwhile, to comprehensively describe an individual datum, we
take advantage of the correlated and complemental information
derived from multiple facets of image data (i.e. multiple views or
features). We devise a robust pair-wise constraint on outcomes of
different views to achieve annotation consistency. Furthermore,
we integrate a robust classifier learning component via `2,p loss,
which can provide effective noise identification power during
the learning process. Finally, we devise an efficient iterative
algorithm to solve the optimization problem in RMSL. We
conduct comprehensive experiments on three different datasets,
and the results illustrate that our proposed approach is promising
for automatic image annotation.

Index Terms—Image annotation, multi-view learning, semi-
supervised learning, `2,p-norm.

I. INTRODUCTION

NOWADAYS, because of the tremendous development
of smart phones and wireless network communication

technologies, it is very convenient to take a photo anytime,
anywhere and share it on social network. As a result, recent
years have witnessed the explosive growth of web images,
which raise urgent demands in various multimedia applica-
tions, such as image semantic index, search, retrieve and
other image management tasks. Despite much progress has
been made in multimedia content analysis [1], [2], major
commercial search engines are still powered by the textual
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index technologies. So, the improvement speed of performance
still seriously lags behind the explosive increase of data and
more promotion can be achieved by exploiting the big data of
images.

In recent years, many researches have concentrated on auto-
matic image annotation [3], [4], which utilizes a set of seman-
tic concepts as the high level or abstract semantic descriptors
and subsequently can be used to facilitate image semantic
search, index and other various image related multimedia
applications. Image annotation is the process of assigning
labels or concepts to images, which can reflect the semantic
information contained in the image visual features. Because
it is usually a difficult, time-consuming, labor-intensive and
costly process to manually label a large set of images, many
researchers has poured considerable efforts into this area in
recent years, emerging remarkable achievements [5], [6].

Image annotation essentially is equivalent to the problem
of classification, where an image annotated a label can be
treated as classified into the label class. Recently, in the field
of multimedia and computer vision, a variety of machine
learning and data mining algorithms [7]–[12] for automatic
image annotation have been proposed in the literature by
many researchers. In [11], a discriminatively nearest neighbor
model named TagProp was proposed, where a model based
on weighted nearest-neighbor was used to predict the labels
of the new test images by exploiting labeled training images.
For the problem of the well-known semantic gap, these works
related to image annotation have shown promising perfor-
mances powered by machine learning algorithms. In [13],
image annotation approaches were roughly divided into two
groups, i.e. tagging or retrieval-based paradigm and labeling-
or learning-based algorithms. Typically, retrieval approaches
encompass searching phase, where similar images are searched
from web data sets, and mining-for-tags phase, where the
labels for the test images correspondingly are mined from the
textual information associated with the retrieved images.

In the era of big data, we can easily collect plenty of image
data. Nonetheless, how to leverage these precious resources
to train an annotation model for achieving better prediction
performance has been attracting extensive attention. For the
task of image tagging, users of many photo-sharing web sites
can choose to take the opportunity to assign some labels when
uploading photos or refuse. When developing automatic image
annotation models, it would be beneficial to deliberate the
intrinsic properties [14] of web image collection, including

• inter-class imbalance of labeled instances, i.e. there are
only a very narrow number of images that are labeled
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in many classes, in conjunction with a large number of
additional images unlabeled;

• multiple facets, that is, multiple distinct features or views
are usually needed to completely describe the contents
of an image, such as hand-crafted features LLC [15] and
FK [16] encoding of local features for bags of visual
words models, and learned abstract features FC6 and FC7
derived directly from the output of the FC6 and FC7
layers of Alexnet [17];

• imbalance between classes, where the number of samples
of some categories could be too large, while may be very
few in the other classes; and

• noise issue, some labels of the images could be in-
complete and noisy. Recently, many techniques, such as
semi-supervised learning, multi-view learning and robust
learning, have been proposed to address the various kind
of problems above.

To efficiently retrieve, browse and manage the large number
of web images, many approaches have been proposed. Most
existing annotation methods are supervised learning [8], [18],
designed for single view features that are often noisy and
redundant. In [8] a probabilistic formulation was proposed
for the tasks of semantic image annotation and retrieval,
together with theoretical arguments and extensive experiments
for illustration. Recently, many algorithms based on semi-
supervised learning has also been proposed for image anno-
tation. Considering the complexity of contents of images, the
existing semi-supervised learning methods based on machine
learning, which require a large number of training samples, are
developed to achieve reasonable performance. A new semi-
supervised annotation approach by optimal graph learning
[12] was proposed, which can enclose the relevances of
different data points more accurately. However, the real world
images are always represented as multiple features with most
unlabeled. In contrast to single-view algorithms, generally,
more performance promotion can be achieved by utilizing
multiple features properly. A multiview method based on
Hessian regularization [19] was proposed for image annotation
task.

Inspired by the above observations and analysis, in this
paper, we propose a new model, termed as robust multi-
view semi-supervised learning (RMSL), for image annotation
task, which expands our previous work [20]. Our model
illustrated as Figure 1 jointly explores intrinsic data structural
knowledge as well as multi-faceted information embedded in
the various features of data. Specifically, we employ semi-
supervised learning based on graph to model local structure
of image data, which can uncover the intrinsic data structural
information by exploiting both labeled images and unlabeled
images. Meanwhile, we devise a multi-view constraint to
enforce the outcomes of different views to be as consistent
as possible. By doing so, we are able to effectively explore
the correlated and complemental information from different
views to comprehensively describe data. Moreover, in order
to further handle the problem of unreliable labels, we develop
a robust learning component which leverages `2,p loss function
to effectively suppress the negative influence of noisy samples

in the training set and add flexibility and adaptability for
various specific data. Finally, we devise an efficient iterative
algorithm to solve the optimization problem in RMSL. We
conduct extensive experiments on three different datasets, i.e.
NUS-WIDE [21], MIRFLICKR-25000 [22] and IAPR TC-12
[23], [24], and the results illustrate that our proposed approach
is superior for large scale web image automatic annotation
task.

The remainder of the paper is organized as follows. Related
work is briefly reviewed in Section 2. In section 3, we detail
the proposed algorithm and its solution, followed by experi-
mental results and analysis. Lastly, conclusions are drawn in
Section 4.

II. RELATED WORK

In this section, we briefly review the related research on
semi-supervised learning, multiple feature learning and auto-
matic image annotation.

A. Semi-Supervised Learning

In recent years, the power of narrowing the semantic gap
has been demonstrated by many methods based on supervised
learning [25], [26]. For example, Support Vector Machine
(SVM) and its various variants, as a typical supervised method,
have been widely investigated for image annotation in the
literature [27], [28], [29], [30]. However, it is usually costly
and not easy to manually label a large set of images, which
is also a time-consuming, labor-intensive task, and there are
many rich images with various contents that can be used to
further advance the performance. Recently, many researchers
poured much attention into semi-supervised learning and many
successes have been achieved in the application of image
annotation and classification [31], [32], [33], [34].

Considering the excessive cost of annotation of a large
number of data manually, semi-supervised learning is com-
mitted to reducing this phenomenon. It is rather intuitive that
there should be some common labels between two image
samples having similar features, which is termed as manifold
assumption [35]. The most common class of semi-supervised
methods based on the manifold assumption leverages manifold
regularization to seek the intrinsic geometry of the data
distribution, which is achieved by penalizing the regularization
term along the potential manifold. The most common way to
characterize the underlying manifold geometry of a dataset is
to choose the graph Laplacian [36], [37], whereas there are
some other methods, which have been paid much attention
and have brought about many achievements. It is flourishing
in the literature that many semi-supervised methods based
on graph Lapacian have been proposed, such as Laplacian
Regularized Least Square Regression (LapRLS) [35], Lapla-
cian Regularized Support Vecto Machine (LapSVM) [35] and
Flexible Manifold Embedding [38].

During recent years, graph-based semi-supervised learning,
as one of the important branches of semi-supervised learning,
has been developed by many researchers [39] and many
advancements in this direction have been achieved in the
literature [19], [35], [38], [40], [41]. In [40], a semi-supervised
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Fig. 1: The illustration of our RMSL framework for automatic image annotation.

method based on graph was proposed, which consider to learn
from both local consistency of similarity and global manifold
consistency. In the method, the label information of each
point is iteratively spread to its neighbors before satisfying
a global stable state, so the prediction of label information for
unlabeled samples was finished during the iterative procedure.
However, a new testing image which is not in the training set
can not get the label information by LGC, because it belongs
to the class of transductive method. In contrast to transductive
algorithm, some other inductive method of semi-supervised
learning which can predict labels for new testing set, such
as Laplacian Regularized Least Square Regression [35] and
Flexible Manifold Embedding [38], have also been proposed.
Typically, the methods based on manifold framework encom-
pass two terms, i.e. a loss function and a regularizer. So, by
substituting different kind of loss functions and regularizers,
which affect classification performance significantly, we can
get a variety of models. In [19], a semi-supervised method
based on Hessian regularization was proposed for image
annotation, instead of Laplacian regularization.

B. Multiple Feature Learning
A variety of methods which can perform well in single

view has been proposed in the literature, whereas in multiple

features, they can not exhibit the superiority of multi-view.
For an image, many different features can be extracted using
different methods, such as hand-crafted features LLC and FK,
and learned abstract features FC6 and FC7. Each view con-
tains different discriminative information, which characterises
specific contents of the image from one aspect, and different
views usually are complementary to each other. Even if there
are not natural multiple features, multiple view features can
be achieved by splitting one feature.

Recently, multiple feature learning has been investigated a
lot in the literature [19], [42], [43]. In general, there are three
feature fusion strategies, including early fusion, late fusion and
multi-stage fusion.

In early fusion strategy, faced with multiple view features,
it is simple to directly concatenate each feature, thus resulting
in a long feature vector. Although a good performance may be
achieved by this simple direct fusion scheme, such as in [44],
there are also accompanied with some other problems, such as
the burden of more computational resources and over-fitting
problem especially in case of small training set. However,
more computational resources required to process the long
feature vectors formed by concatenating directly can not
guarantee improved performance, that is, worse performance
may be obtained especially when faced heterogenous features
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[45]. It may be caused by the lost of individual structural
information of each feature when concatenating.

Different with early fusion methods, late fusion strategy
firstly learn multiple models by efficiently leveraging each
kind of the features, then the multiple models are fused into a
unified objective framework by certain criterion. As shown in
the name, i.e. late fusion, the fusion was turn up after separate
learning of each feature in stead of the fusion of multiple
features firstly. In [46], a late fusion algorithm based on SVM,
which combines KCCA and SVM two-stage learning into a
single optimisation termed SVM-2K, has been proposed to
process the situation of two types of features. Another typical
statistical approach, named Canonical Correlation Analysis
(CCA), try to seek the projection directions which can max-
imizes the correlations between two sets of multidimensional
variables. [47] established an equivalence least-squares formu-
lation for CCA, which has been successfully applied for multi-
label classification. However, late fusion also has the same
drawback as early fusion, that is the high expense of learning.
Moreover, correlations among multiple features have not been
taken into consideration by most late fusion approaches.

In addition to early and late fusion strategies, the multi-
stage fusion scheme, i.e. combining early and fusion scheme
into a unified framework, has also been explored recently.
For instance, in [48], a two-step feature fusion method was
proposed, where multiple kernel learning is firstly used to
integrate various visual and audio multi-modal features as the
early fusion scheme, followed by late score fusion strategies.
It was justified that additional performance improvements can
be gained by multi-stage fusion. It is generally beneficial to
combine multiple features for image content analysis. Howev-
er, improvement can’t always be guaranteed and even worse
performance may be obtained by feature fusion if the different
features are paradoxical or a feature is too strong together with
a very weak feature. There are still many things needed to
be investigated to evaluate the appropriateness of combining
multiple features [49].

C. Automatic Image Annotation

Nowadays, more and more images are available and most
of content-based image retrieval methods having been used
still far can’t get satisfactory experience. Therefore, automatic
image annotation, which can assign correlated labels to images
thus transform content-based image retrieval to text-based
image retrieval, is particularly important. Assuming images
represented with features and corresponding semantic labels
are collected, various machine learning algorithms can be
chosen to learning a family of models to fit the matching
relationships between image features and semantic labels.
Once a model was trained, a new image can be annotated
using the algorithm. In [50] automatic image annotation meth-
ods were classified into three types, that is, single labeling
annotation using conventional classification methods, multi-
labeling annotation and the web based image annotation using
metadata.

The first annotation approach, i.e. single labeling annotation
using binary classification, typically encompasses SVM and

SVM-based methods, decision tree (DT) and decision-tree-
like algorithms, etc. SVM has been shown high effectiveness
in many applications [27]–[30], [46], especially when the
size of training data set is small and the dimensionality of
the feature vector is high. Originally, SVM is a classifier
designed to address this situation where there are only two
categories, working by finding the optimal hyperplane from the
training samples to separate them maximally. However, image
annotation is usually a multiple classes problem where images
are always correlated with several labels. Faced with multiple
classes, it is always common and efficient to choose the OVA
scheme, that is training a separate SVM for each label class
against all the rest of the class. In [27] image segmentation and
classification were conducted simultaneously using multiple
SVMs, where the images were segmented into regions and
annotated for each segmented regions.

Compared to binary classification approaches, multiple la-
beling methods annotate an image with multiple labels si-
multaneously. Generally, the content of an image sample
is associated with multiple objects [51], so it’s commonly
an image correlated with multiple semantic concepts. One
of typical multi-labeling methods is probabilistic based al-
gorithms such as the Bayesian methods [7], [52]. In [52],
a relevance model was proposed assuming that the regions
in an image can be represented using a small vocabulary
of blobs, which were generated from image features using
clustering. For a new test image, the probabilistic of generating
a word associated with it can be derived from the relevance
model trained from the given training samples. In contrast to
algorithms based on probabilistic, there are also many non-
probabilistic based methods proposed in the literature [13],
[41], [49]. A new algorithm framework for image annotation
by simultaneously considering label correlation and visual
similarity was proposed [13].

The images in the web are usually accompanied with meta-
data, such as text descriptions, URL, HTML code, GPS data
and timestamps, etc. In the literature, many image annotation
methods incorporating metadata have been proposed [53],
[54]. In [54], a non-parametrical model was proposed using
image metadata. In this method, firstly, Jaccard similarities
was used to generate related neighborhoods for an image,
then the visual information of an image and its neighbors was
combined together by a deep neural network. An approach
called weakly semi-supervised deep learning for multi-label
image annotation (WeSed) [55] was proposed recently. In
WeSed, a novel weakly weighted pairwise ranking loss was
effectively utilized to handle weakly labeled images, while
a triplet similarity loss was employed to harness unlabeled
images.

In the next section, we propose a new model for image
annotation task, termed as Robust Multi-view Semi-supervised
Learning (RMSL). In our method, we apply graph Laplacian
based semi-supervised learning to explore underlying data
structural knowledge. Different from the single view semi-
supervised method SFSS [41] based on feature selection for
automatic image annotation, which aims to jointly select the
most relevant features from all the data points by using a
sparsity-based model, we propose to incorporate l2,p-norm into
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our objective function to add flexibility and adaptability from
our data, which can show effective noise identification power
during the training process. In the method LRGA proposed by
Yang et al [56], for each data point, a local linear regression
model, where ridge regression was adopted to weakly handle
noisy samples, was used to predict the ranking values of its
neighbouring points, while our robust l2,p loss function was
constructed using the whole dataset directly for the task of
automatic image annotation. In order to maximize the efficacy
of multiple views (e.g., LLC and FC7) and to achieve the
semantic consistency between different views, we deliberately
incorporate the consistent term via robust `2,q loss (resistant to
noisy samples), which is mostly different from many existed
multiple views learning methods [47], [57].

III. THE PROPOSED APPROACH

In this section, we present the proposed Robust Multi-view
Semi-supervise Learning (RMSL) approach. Firstly, we start
with a recap of graph-based semi-supervised learning, and
then elaborate the formulation of our RMSL, followed by
an efficient algorithm for optimizing the model. Lastly, we
theoretically analysis the convergence of our algorithm.

A. Notations

Suppose we have a training dataset of n observations from
m views. Denote Xt = [x

(t)
1 , x

(t)
2 , . . . , x

(t)
l , x

(t)
l+1, . . . , x

(t)
n ] as

the t-th features of these samples, where x(t)i ∈ Rdt×1(1 ≤
i ≤ n) is the t-th view feature of the i-th observation, where
dt is the dimensionality of the t-th feature space. Note that the
first l samples in the datasets are associated with labels while
the rest n − l samples are unlabeled. Given the label matrix
of the training dataset corresponding to the t-th view Yt =

[y
(t)
1 , y

(t)
2 , . . . , y

(t)
l , y

(t)
l+1, . . . , y

(t)
n ]T ∈ {−1, 0, 1}n×c, where c

is the number of labels, y(t)i ∈ {−1, 1}c if (1 ≤ i ≤ l) (i.e.,
labeled sample) and y(t)i is all-zero vector if (l + 1 ≤ i ≤ n)

(i.e., unlabeled sample). Let y(t)ij denote the j-th class of the
i-th datum corresponding to the t-th view, then y(t)ij = 1 if the
i-th sample is in the j-th class, and y

(t)
ij = −1 otherwise. If

the sample is unlabeled, y(t)ij is set to zero. The objective of
this work is to utilize multiple views of both the labeled and
unlabeled data to learn robust classifiers for image annotation.

B. Graph-based Semi-Supervised Learning

Given a set of data samples, we can use the visual features
to construct a graph model S, whose element Sij reflects the
visual similarity between the two image samples xi and xj on
the graph. In order to reduce the number of parameters, we
simply define S as below:

Sij =

{
1, xi ∈ Nk(xj) or xj ∈ Nk(xi);
0, otherwise, (1)

where Nk(·) denotes the set of k nearest neighbors of a datum.
By defining a diagonal matrix D, whose i-th diagonal element
is computed as Dii =

∑n
j=1 Sij , we have the graph Laplacian

matrix L = D − S.

In order to exploit labeled and unlabeled data simulta-
neously, we define F = [f1, f2, · · · , fn]T ∈ Rn×c as a
predicted label matrix for all the training data, where fi ∈
Rc(1 ≤ i ≤ n) is the predicted label of the i-th sample.
According to the idea of semi-supervised learning [39], F
should be simultaneously consistent with the ground truth
labels and the visual graph model S. Therefore, F can be
obtained by solving the minimization optimization problem of
the following objective function:

min
F

Tr(FTLF ) + Tr((F − Y )TU(F − Y )), (2)

where U ∈ Rn×n is a diagonal matrix and named as a decision
rule matrix, whose diagonal elements Uii is a large number(set
as 1010 in our experiment) if the i-th data point is labeled and
Uii = 1 otherwise. This setting of decision rule matrix U can
keep the solved labels F in line with the ground truth label
matrix Y where the images are labeled.

In order to learn a robust classifier, which should be tolerant
to samples with noisy labels, we propose to integrate a robust
loss function with adaptive power to different noise levels. To
this end, we employ the generalized `2,p loss, then the graph-
based semi-supervised classification learning framework can
be rewritten as follows:

min
F,W,b

Tr(FTLF ) + Tr((F − Y )TU(F − Y ))

+µ(‖XTW + 1nb
T − F‖2,p + γ‖W‖2F ),

(3)

where µ and γ are balance parameters. W ∈ Rd×c is the
mapping matrix and b ∈ Rc is the bias term. ‖W‖2F is the
regularization term, 1n is an all-one vector. The `2,p norm of
a matrix M is defined as

‖M‖2,p =
n∑

i=1

‖Mi‖p2, (4)

where Mi is the i-th row of M .

C. Multi-view Semi-supervised Learning

For the t-th view of the data, we can compute a view-
depended Laplacian matrix Lt from the view feature Xt. Then
we can calculate a view-depended predicted label matrix Ft

from Eq. (3) accordingly. Thus we can introduce the idea of
multi-view learning into the aforementioned graph-based semi-
supervised classification learning to leverage the correlated and
complemental information between different views for better
performance. To this end, we propose to jointly minimize all
the view-specific objective functions and restricting all view-
specific Ft to be as closely as possible.

Therefore, we can express our final objective function of
the robust multi-view semi-supervised learning (RMSL) as
following:

min
{Ft,Wt,bt}|mt=1

m∑
t=1

(
Tr(FT

t LtFt)+Tr((Ft−Y )TU(Ft−Y ))

+µ(‖XT
t Wt+1nb

T
t −Ft‖2,p+γ‖Wt‖2F )

)
+λ

∑
t,s

‖Ft−Fs‖2,q,

(5)
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where λ is a balance parameter. The above formulation bene-
fits from multi-view learning together with graph-based semi-
supervised learning. This model effectively utilizes the large
amount of unlabeled data and complemental information from
different views. The last term λ

∑
t,s ‖Ft − Fs‖2,q is able to

enforce the outcomes of all pairs of views to be as consistent
as possible, thereby leading to better performance.

D. Solution

In this section, we propose an efficient iterative algorithm to
solve our model. Note that it is non-trivial to directly solve the
problem in Eq. (5) due to the non-convexity of the `2,p loss
and the `2,q regularizer. To overcome this problem, we first
transform the original formulation to the following alternative
one:

min
{Ft,Wt,bt}|mt=1

m∑
t=1

(
Tr(FT

t LtFt) + Tr((Ft − Y )TU(Ft − Y ))

+µTr(XT
t Wt + 1bTt − Ft)

TD
(l)
t (XT

t Wt + 1bTt − Ft)

+µγ‖Wt‖2F
)
+ λ

∑
t,s

Tr(Ft − Fs)
TD

(r)
ts (Ft − Fs),

(6)
where D(l)

t a diagonal matrix with its i-th diagonal element
computed as

(D
(l)
t )ii =

1
2
p‖r

i
t‖

2−p
2

, (7)

where rit is the i-th row of the matrix XT
t Wt+1nb

T
t −Ft. Sim-

ilarly, D(r)
ts is diagonal and its diagonal element is calculated

as

(D
(r)
ts )ii =

1
2
q‖r

i
ts‖

2−q
2

, (8)

where rits is the i-the row of the matrix Ft − Fs.
Note that both D(l)

t and D(r)
ts are related to Ft, Wt and/or

bt, which makes the problem in Eq.(6) hard to solve. Thus,
we design an iterative method which uses fixed D(l)

t and D(r)
ts

obtained in the previous iteration to bypass the obstacle. In
this way, we can see that Ft, Wt and bt can be solved from
Eq. (6).

By setting the derivative of (6) w.r.t. bt to be zero, we have

bTt =
1TD

(l)
t (Ft −XT

t Wt)

1TD
(l)
t 1

. (9)

Substituting bt in (6) by (9) and setting the derivative of (6)
w.r.t. Wt to be zero again, we get

Wt = AtFt, (10)

where

Ht = I − 1n1
T
nD

l
t

1T
nD

l
t1n

, (11)

At = (XtH
T
t D

l
tHtX

T
t + γI)−1XtH

T
t D

l
tHt. (12)

Substituting bt,Wt in (6) by (9), (10) respectively, we arrive
at

min
Ft|mt=1

m∑
t=1

(
Tr(FT

t (Lt + µ(I −AT
t Xt)H

T
t D

(l)
t Ht)Ft)

+Tr(Ft−Y )TU(Ft−Y )
)
+λ
∑
t,s

Tr(Ft−Fs)
TD

(r)
ts (Ft−Fs)

(13)
By setting the derivative of the above objective function w.r.t.
Ft to be zero, we have

Ft =MtQt, (14)

where

Mt = (Lt + µ(I −AT
t Xt)H

T
t D

l
tHt + U + λ

m∑
s=1

D
(r)
ts )−1,

(15)

Qt = (UY + λ
m∑
s=1

D
(r)
ts Ft), (16)

and we set D(r)
ts = 0 when t = s, t = 1, 2, . . . ,m.

Algorithm 1: The algorithm for optimizing RMSL model.
Input : The tth view feature matrix of training set

Xt ∈ Rdt×n, and corresponding ground-truth
label matrix of the training set Y ∈ Rn×c;

Output: Optimized classification parameters matrix
Wt ∈ Rdt×c, and bias vector bt;

1 Randomly initialize Ft, Wt and bt, t = 1, 2, . . . ,m;
2 Compute Laplacian matrix Lt of the t-th view according

to Eq. (1);
3 repeat
4 Compute D(l)

t and D(r)
ts according to Eq. (7) and

Eq. (8), respectively;
5 for t = 1, 2, . . . ,m do
6 Compute Ht according to Eq. (11);
7 Compute At according to Eq. (12);
8 Mt according to Eq. (15);
9 Qt according to Eq. (16);

10 Update Ft according to Eq. (14);
11 Update Wt according to Eq. (10);
12 Update bTt according to Eq. (9);
13 end
14 until there is no change to Ft, Wt and bt,

t = 1, 2, . . . ,m;
15 return Ft, Wt and bt, t = 1, 2, . . . ,m;

In this way, we can solve the objective function to obtain
the optimal solutions of Ft, Wt, bt by the proposed RMSL
algorithm. The detailed approach is summarized in Algorithm
1. After getting the values of Wt, bt, we use the multi-view
relations to calculate the predicted values for the new testing
set, which is formulated as the following equation:

F̂ =
1

m

(
m∑
t=1

(XT
t Wt + 1bTt )

)
. (17)
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Fig. 2: The effects of the parameters µ and γ in terms of MAP performance on three datasets.

E. Convergence Study

In this section, we firstly present two lemmas together with
detailed proof, which are helpful for proving Theorem 1. Then
we give and prove the theorem for the convergence of our
proposed Algorithm 1.

Lemma 1: Let rit be the i-th row of the residual Rt =
XT

t Wt + 1nb
T
t − Ft in previous iteration and r̃it be the i-

th row of the residual R̃t = XT
t W̃t + 1nb̃

T
t − F̃t in current

iteration, then the following inequality holds:

‖r̃it‖p −
p‖r̃it‖2

2‖rit‖2−p
≤ ‖rit‖p −

p‖rit‖2

2‖rit‖2−p
. (18)

Proof. Detailed proof is in Appendix.
Lemma 2: Given Rt = [r1t , r

2
t , . . . , r

n
t ]

T , where rit is the
i-th row of Rt, then we have the following conclusion:

n∑
i=1

‖r̃it‖p−
n∑

i=1

p‖r̃it‖2

2‖rit‖2−p
≤

n∑
i=1

‖rit‖p−
n∑

i=1

p‖rit‖2

2‖rit‖2−p
. (19)

Proof. We sum up inequalities corresponding to all rows of
Rt in Lemma 1 we have the conclusion in Lemma 2.

Similarly, we can get the two lemmas for rits and r̃its, which
are the i-th row of the matrix Ft − Fs in previous iteration
and the matrix F̃t − F̃s in current iteration, respectively.

Theorem 1: At the iteration (line 4 to line 9) of Algorithm
1, the value of the objective function in Eq. (5) monotonically
decreases.
Proof. Detailed proof is in Appendix.

IV. EXPERIMENTS

In this section, in order to validate the effectiveness of
our proposed approach on image annotation task, we conduct
comprehensive experiments on three real web image datasets,
i.e., NUS-WIDE, MIRFLICKR-25000 and IAPR TC-12.

A. Datasets and Features

The NUS-WIDE dataset totally includes 269,648 real-world
images which are labeled with 81 concepts. The dataset is sep-
arated into two parts, i.e., the training set containing 161,789
images and the testing set consisting of 107,859 images. The
MIRFLICKR-25000 dataset comprises 25,000 images with 24
concepts. In this paper, we use the potential labels in a very

wide sense as our ground-truth, which is included in the newest
version files provided by the authors. Following the setting
of Standardized Challenge # 1 suggesting in [22], the total
image set consisting of 25,000 images is divided into two
parts, i.e., the training set and test set including 15,000 and
10,000 images respectively. As suggested in the paper [22], we
partition every five images to reduce bias, that is, the first three
are assigned as training images, the last two as test images.
The IAPR TC-12 dataset consists of 20,000 still natural images
taken from locations around the world and comprising an
assorted cross-section of still natural images. While this dataset
was created for the CLEF cross-language image retrieval track
(ImageCLEF), it has also been used as a benchmark for the
task of automatic image annotation in [11], [58]. In [24], the
20,000 images in the collection have been annotated using 255
labels. For our experiments, we collect the 40 most frequent
labels for evaluation, which gives us 19,296 images, and we
spilt it into two subsets equally, i.e., the training set and test
set both including 9,648 images.

In our experiments, we first extracted two types of hand-
crafted visual features based on two novel encodings for bag
of visual words models using SIFT local descriptor [59],
which are locality-constrained linear encoding (LLC) [15]
and improved Fisher encoding (FK) [16], using the code [60]
and [61]. The final dimensionality of the LLC feature vector
equals to k (e.g., the vocabulary size) and we set k = 4096.
For the improved Fisher encoding, the dimensionality of the
FK feature vector equals to 2d ∗ k, where d is the descriptor
(SIFT) dimensionality and k is still the vocabulary size, and in
our experiments we reduce the dimension of SIFT descriptor
from 128 to 50 by PCA. Now our FK feature vector is 25,600
dimensions, which is further reduced to 4096 by PCA to save
computational cost. Consequently, the LLC and FK feature
vectors are both 4096-d. In addition, we extracted two new
sets of deep learning features, i.e., FC6 and FC7, which are
also both 4096-dimension, based on the outputs of the 6th and
the 7th fully connected layers by Caffe [62].

B. Compared Methods and Experimental Setup

For the comparison of the proposed RMSL with the existing
algorithms in the case of multiple features, we present the
comparison results with the representative multiple feature
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Fig. 3: The effects of the parameter λ in terms of MAP performance on three datasets.
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Fig. 4: The effects of the parameters p and q in terms of MAP performance on three datasets.

learning algorithm CCA [47] (followed by Least Square re-
gression and SVM, which are denoted as CCA-LS and CCA-
SVM, resprestively) and a new method for multiple view
semi-supervised dimensionality reduction [57] (followed by
Least Square regression, which are denoted as MVSSDR-
LS). Also we report the results between our RMSL with two
semi-supervised algorithms, i.e., Structural Feature Selection
with Sparsity (SFSS) [41] and Flexible Manifold Embedding
(FME) [38]. Additionally, we also show the results between
our RMSL and a new family of boosting algorithms, denoted
TaylorBoost, and in our experiments we choose the Laplace
loss which is usually the best of losses pointed in [63].

In our experiment, we follow the convention of semi-
supervised learning approaches setting for comparison. To
simulate a semi-supervised learning scenario, we randomly
divided the training data into two subsets: one set was called
labeled set whose labels are known, the rest was called
unlabeled set whose labels were hidden. Specifically, the
training set encompassing both labeled and unlabeled data is
used to train the model, and the testing set is only available
for predicting. Denote c as the number of classes in each
dataset (i.e., c = 81 for NUS-WIDE, c = 24 for MIRFLICKR-
25000 and c = 40 for IAPR TC-12). For all the subsequent
experiments, there are a total of 2000 training images, which
include l labeled images (l = 1, 3, 5, 10, and 15) per category
randomly sampled from the training set, together with the
remaining selected images unlabeled.

The number k of nearest neighbors for computing Laplacian
matrix is set to 15. In our proposed method, there are totally
five parameters, i.e., µ, γ, λ, p and q. We conducted a

range of experiments to tune the parameters and selected the
parameters around the best performance in our experiments.
Specifically, we tuned the parameters µ, γ and λ in the
range of {10−6, 10−4, . . . , 104, 106} and chose p, q from
{0.1, 0.2, . . . , 1.8, 1.9}. For CCA-LS, CCA-SVM, MVSSDR-
LS, FME and SFSS, we also tune their parameters from the
same range of {10−6, 10−4, . . . , , 104, 106}. For CCA-SVM,
we used linear kernel for SVM and there was no parameter to
tune for TaylorBoost. The parameters corresponding to the best
results were used in our experiments. In our experiments, we
used the metric of Mean Average Precision (MAP) to evaluate
performance in terms of the task of image annotation.

C. Parameters Setting

In this part, we evaluate the effects of different parameters
on our methods and we don’t tune all the 5 parameters together
because of different sensitivities and saving the computing
time. Specifically, we first tune µ and γ together while keeping
other parameters, i.e. λ, p and q fixed at 1. The results are
showed in Figure 2 for NUSWIDE, MIRFLICKR-25000 and
IAPR TC-12 datasets respectively. Since our experimental
performances are not sensitive to parameters λ, p and q
compared with µ and γ, in order to simplify the tuning process
and reduce the running time, we report the effects of each
individual parameter while keeping other parameters fixed at
the best if tuned or default 1 if not. While Figure 3 and 4
shows the performance variance w.r.t. λ and p, q respectively.

From Figure 2, we can see that an approximately analogous
pattern for performance, i.e. three similar variance tendencies.
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Fig. 5: Performance comparisons w.r.t. the number of labeled training data on three datasets when using LLC and FK features.
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Fig. 6: Performance comparisons w.r.t. the number of labeled training data on three datasets when using FC6 and FC7
features.

Both Figure 2.(a), (b) and (c) show that as µ and γ increase
from 10−6 to 106, the performance keeps going up; best µ
and γ all appear in the right top areas, i.e. µ and γ both
take a big value. Such phenomenon implies that both classifier
error term and regularization term play important roles in
finding the optimal classifier coefficients, that is both large
parameters help to achieve the best results. For parameter λ,
which controls the similarity among the outputs of different
classifiers, the performance keeps little changed when λ varies
in little values domain; as λ take a big value, the perfor-
mance becomes worse sharply, for example, the MAP value
becomes very low when λ takes 106 for NUS-WIDE dataset,
MIRFLICKR-25000 dataset and IAPR TC-12 dataset. Such
phenomenon implies that too large value of parameter λ helps
to achieve very poor results. As balance parameter λ controls
the level of consistency between different views, the correlated
and complemental information may become the same and
disappear if the value of λ is too large. For parameters p and q,
which can provide effective noise identification power during
the training process, as showed in Figure 4 we can see there are
three totally inverse variance trends for p. This implies NUS-
WIDE, MIRFLICKR-25000 and IAPR TC-12 datasets have
different noise distributions and, thanks for the adaptability
of l2,p-norm, we can flexibly select appropriate p according
to the data and noise distributions. From Figure 4, we also
can find that the performance varies a little when parameter
q changed from {0.1, 0.2, . . . , 1.8, 1.9}. For this phenomena,
because of the same ability of noise identification, q varies

less sharply than p and maybe there will not be more gains if
more l2,p-norm are adopted.

Finally, we set all parameters to the values corresponding
to the best performance for our subsequent experiments, i.e.
µ = 106, γ = 104, λ = 104, p = 0.8, and q = 1.9 for
NUS-WIDE dataset, µ = 106, γ = 102, λ = 102, p = 0.4,
and q = 1.5 for MIRFLICKR-25000 dataset and µ = 106,
γ = 104, λ = 104, p = 1.0, and q = 1.6 for IAPR TC-12
dataset.

D. Comparison and Analysis

In this part, we evaluate the effectiveness of our proposed
approach by comparing to other methods.

1) Comparison with Different Algorithms: First, we com-
pare the proposed RMSL algorithm with other state-of-art
algorithms using the fusion of two different features, for the
CCA based algorithms can only address the situation of two
views. As the algorithms SFSS and TaylorBoost are single-
view methods, we directly concatenate different feature vectors
to form a long feature vector for the subsequent experiments.
Also, we add one more baseline - Laplacian Regularization
+ Robust loss on concatenated features (denoted as RMSL-s)
to justify the need for multi-view term. The results of using
LLC and FK features are shown in Figure 5 for NUS-WIDE,
MIRFLICKR-25000 and IAPR TC-12 datasets respectively.
The results of using FC6 and FC7 are shown in Figure 6 for
NUS-WIDE, MIRFLICKR-25000 and IAPR TC-12 datasets
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TABLE I
Comparison of our approach and SFSS on single-view and multi-view for NUS-WIDE.

LLC FK LLC+FK FC6 FC7 FC6+FC7

RMSL

1× c 5.94% 4.02% 5.30% 13.35% 13.48% 13.37%
3× c 6.64% 5.94% 7.06% 19.35% 19.21% 21.51%
5× c 7.00% 6.34% 7.54% 22.36% 21.81% 24.84%
10× c 7.54% 6.95% 8.36% 25.16% 25.40% 28.17%
15× c 7.44% 7.49% 8.69% 26.82% 27.28% 30.25%

LLC FK LLC+FK (ef) LLC+FK (lf) FC6 FC7 FC6+FC7 (ef) FC6+FC7 (lf)

SFSS

1× c 5.93% 4.02% 5.49% 5.54% 8.19% 8.79% 9.34% 6.49%
3× c 6.56% 5.52% 6.65% 7.09% 15.18% 15.16% 16.81% 15.92%
5× c 7.06% 2.98% 2.98% 7.47% 18.41% 17.75% 20.47% 21.36%
10× c 7.43% 2.97% 2.97% 7.78% 21.26% 21.48% 24.55% 26.03%
15× c 7.32% 3.48% 3.49% 7.84% 22.16% 22.28% 26.19% 27.76%

TABLE II
Comparison of our approach and SFSS on single-view and multi-view for MIRFLICKR-25000.

LLC FK LLC+FK FC6 FC7 FC6+FC7

RMSL

1× c 20.59% 16.53% 20.46% 30.77% 34.23% 34.14%
3× c 24.23% 18.76% 23.98% 39.45% 46.01% 45.43%
5× c 24.55% 22.47% 25.74% 43.43% 47.47% 47.50%
10× c 26.04% 23.40% 26.63% 48.82% 51.76% 52.47%
15× c 25.55% 22.13% 25.67% 48.85% 51.76% 52.54%

LLC FK LLC+FK (ef) LLC+FK (lf) FC6 FC7 FC6+FC7 (ef) FC6+FC7 (lf)

SFSS

1× c 19.92% 15.73% 19.47% 19.45% 30.34% 34.41% 31.00% 30.81%
3× c 24.27% 18.56% 23.53% 23.48% 38.99% 46.01% 40.19% 40.00%
5× c 24.36% 22.35% 25.38% 25.32% 44.32% 49.04% 45.37% 45.42%
10× c 25.36% 22.26% 25.94% 25.93% 48.11% 52.72% 49.24% 49.14%
15× c 25.28% 21.59% 25.33% 25.36% 48.86% 53.70% 50.00% 49.87%

TABLE III
Comparison of our approach and SFSS on single-view and multi-view for IAPR TC-12.

LLC FK LLC+FK FC6 FC7 FC6+FC7

RMSL

1× c 15.39% 12.89% 14.91% 20.95% 22.51% 21.05%
3× c 16.54% 14.83% 16.15% 24.75% 25.91% 25.39%
5× c 17.19% 15.87% 17.60% 27.86% 28.27% 28.57%
10× c 17.28% 17.12% 18.41% 30.36% 30.17% 31.26%
15× c 17.29% 18.15% 18.76% 32.65% 32.57% 33.75%

LLC FK LLC+FK (ef) LLC+FK (lf) FC6 FC7 FC6+FC7 (ef) FC6+FC7 (lf)

SFSS

1× c 11.36% 9.17% 9.19% 9.16% 12.09% 16.99% 12.44% 14.41%
3× c 12.99% 10.49% 10.08% 9.87% 14.87% 20.73% 15.05% 18.68%
5× c 13.82% 9.79% 9.99% 9.79% 17.75% 25.81% 18.38% 24.18%
10× c 14.08% 11.69% 12.02% 9.98% 20.90% 28.56% 21.33% 27.35%
15× c 14.00% 12.93% 13.23% 10.72% 23.87% 31.97% 24.30% 30.79%

respectively. From Figure 5 and 6, we have the following
observations.

• First, it can be seen from Figure 5 that RMSL gains the
highest MAP value over other algorithms in almost all
situations. Figure 6 has similar results.

• The performance can be gained when multiple features
are used. The proposed multi-view RMSL algorithm
outperform over the single-view SFSS algorithm which
simply concatenates multiple features.

• Our late fusion of multiple features is effective. Although
RMSL outperforms early fusion based algorithm, for

instance SFSS by simply concatenating features, CCA by
looking for maximally correlated directions in the two
features spaces and MVSSDR-LS by learning the con-
sensus pattern, it remains unclear between early and late
fusion. Additionally, although our single-view version
on concatenated features, i.e. RMSL-s, gains comparable
performance compared with RMSL, it usually suffers
from the burden of more computational resources and
over-fitting problem especially in case of small training
set. Also, it emphasizes the importance of robust loss
compared with FME, and the need of multi-view term
will be further justified in the next subsection.
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TABLE IV
Comparison of our approach on single-view and multi-view.

(a) Single-view (15× c)

LLC FK FC6 FC7

NUS-WIDE 7.44% 7.49% 26.82% 27.28%

MIRFLICKR-25000 25.55% 22.13% 48.85% 51.76%

IAPR TC-12 17.29% 18.15% 32.65% 32.57%

(b) Two-view (15× c)

LLC+FK FC6+FC7 LLC+FC6 LLC+FC7 FK+FC6 FK+FC7

NUS-WIDE 8.69% 30.25% 26.84% 27.30% 26.84% 27.28%

MIRFLICKR-25000 25.67% 52.54% 48.20% 51.73% 48.19% 51.74 %

IAPR TC-12 18.76% 33.75% 32.61% 32.73% 32.60% 32.73 %

(c) Multi-view (15× c)

LLC+FK+FC6 LLC+FK+FC7 LLC+FC6+FC7 FK+FC6+FC7 LLC+FK+FC6+FC7

NUS-WIDE 26.83% 27.31% 30.28% 30.27% 30.29%

MIRFLICKR-25000 47.96% 51.74% 52.60% 52.60% 52.60%

IAPR TC-12 32.50% 32.88% 33.77% 33.76% 33.76%
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Fig. 7: Convergence study.

• The semi-supervised algorithms, i.e. our proposed RMSL
and SFSS, gain higher MAP values than the supervised
ones (TaylorBoost, CCA-LS and CCA-SVM ), suggesting
that additional performance improvement can be gained
leveraging the unlabeled data for image annotation in
these two datasets, especially when the number of labeled
data is small.

• The FC6 and FC7 features based on deep learning are
obviously more informative and discriminative than hand-
crafted features, even if incorporating recent advance in
encoding for bags of word model, which reveal the strong
representative power of deep learning based features.

2) Performance Comparison between multi-view and single-
view: Next, we conduct extensive experiments to validate the
effectiveness of multi-view learning of the proposed method.
First, we compare RMSL with SFSS by forming two two-
view combinations (i.e., LLC+FK and FC6+FC7 ) from the
four evaluated visual features, where two different features
are directly concatenated (denote as ‘ef’ for early fusion) or
averaged (denote as ‘lf’ for late fusion). The corresponding
results are shown in Table I, II and III. We also test and
evaluate our proposed approach in more views setting (i.e.,

three and four views). The experimental results are shown in
Table IV. From Table I, II, III and IV, we have the following
observations.
• It can be seen from Table I, II and III that RMSL always

gains better performance on two two-view settings than
single-view on all NUS-WIDE, MIRFLICKR-25000 and
IAPR TC-12 datasets.

• The proposed RMSL can gain more promotions than
single-view, although we can gain improvements by sim-
ply employing the way of concatenating or averaging
multiple features.

• Even we employ three features or four features, the
performance may still increases a little, but not always.
We can get more or less promotions when adding more
views which may depend on the relations among the
views and dataset distribution. Still, we can see the strong
representative power of deep learning based features.

3) Convergence study: In this part, we conduct experi-
ments to study the convergence of our iterative algorithm in
NUS-WIDE, MIRFLICKR-25000 and IAPR TC-12 datasets
respectively, as illustrated in Figure 7. Here, We fix all the
five parameters, i.e. µ, γ, λ, p and q to 1. As we can see from
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Figure 7, our approach can converge very fast within only a
few iterations, which indicates its efficiency for practical use.

V. CONCLUSIONS

In this paper, we proposed a new model for image an-
notation task, termed as Robust Multi-view Semi-supervised
Learning (RMSL). In our proposed method, we apply graph
Laplacian based semi-supervised learning to explore underly-
ing data structural knowledge. In order to utilize the correlated
and complemental information from different views to com-
prehensively depict data, pair-wise constraints were imposed
on our model to guarantee consistency among different views.
We then incorporate l2,p-norm into our objective function to
add flexibility and adaptability from our data, which can show
effective noise identification power during the training process.
Finally, thus we can boost image annotation performance in
our model by integrating them jointly. We further devised an
effective iterative algorithm to optimize the model. Extensive
experiments on three real-world image data sets showed the
effectiveness of the proposed RMSL method as compared to
the state-of-the-art approaches. In future, we intend to gain
more promotions by exploiting the correlations between mul-
tiple different labels, since image annotation can be regarded
as a multi-label problem.

APPENDIX A
PROOF OF LEMMA 1

Proof. We consider the following function

g(a) = pa2 − 2ap + (2− p), (20)

where p ∈ (0, 2). We expect to show that when a > 0, g(a) ≥
0. The first and second order derivatives of the function in
Eq. (20) are g′(a) = 2pa− 2pap−1 and g′′(a) = 2p− 2p(p−
1)ap−2, respectively. We can see that a = 1 is the only point
that satisfies g′(a) = 0. Also, when 0 < a < 1, g′(a) < 0 and
when a > 1, g′(a) > 0. This means that g(a) is monotonically
decreasing when 0 < a < 1 and monotonically increasing
when a > 1. Moreover, we have g′′(1) = 2p(2 − p) > 0.
Therefore, for ∀a > 0, g(a) ≥ g(1) = 0.

Then, by substituting a =
‖r̃it‖
‖rit‖

into Eq. (20), we obtain the
conclusion

p
‖r̃it‖

2

‖rit‖2
− 2

‖r̃it‖
p

‖rit‖p
+ (2− p) ≥ 0,

⇔ p‖r̃it‖2 − 2‖r̃it‖p‖rit‖2−p + (2− p)‖rit‖2 ≥ 0,
⇔ p‖r̃it‖2‖rit‖p−2 − 2‖r̃it‖p + (2− p)‖rit‖p ≥ 0,
⇔ 2‖r̃it‖p − p‖r̃it‖2‖rit‖p−2 ≤ (2− p)‖rit‖p,
⇔ ‖r̃it‖p −

p‖r̃it‖
2

2‖rit‖2−p ≤ ‖rit‖p −
p‖rit‖

2

2‖rit‖2−p .

APPENDIX B
PROOF OF THEOREM 1

Proof. Denote R̃t = XT
t W̃t + 1nb̃

T
t − F̃t, R̃ts = F̃t − F̃s

and R(Ft,Wt) = Tr(FT
t LtFt)+Tr((Ft−Y )TU(Ft−Y )) +

µγ‖Wt‖2F ). Suppose F̃t, W̃t, b̃t are the optimized solution

of the alternative problem (6), then we obtain the following
conclusion:∑

t

(
R(F̃t, W̃t) + µTr(R̃T

t D
l
tR̃t)

)
+
∑
t,s

λTr(R̃T
tsD

r
tsR̃ts) ≤

∑
t

(
R(Ft,Wt) + µTr(RT

t D
l
tRt)

)
+
∑
t,s

λTr(RT
tsD

r
tsRts)

⇒
∑
t

(
R(F̃t, W̃t) + µ

n∑
i=1

p‖r̃it‖2

2‖rit‖2−p

)
+ λ

∑
t,s

n∑
i=1

p‖r̃its‖2

2‖rits‖2−p

≤
∑
t

(
R(Ft,Wt) + µ

n∑
i=1

p‖rit‖2

2‖rit‖2−p

)
+ λ

∑
t,s

n∑
i=1
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⇒
∑
t

(
R(F̃t, W̃t) + µ
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i=1
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(
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(

n∑
i=1
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≤
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‖rit‖p − µ
(

n∑
i=1
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(
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‖rits‖p −
(
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.

Given the conclusion of Lemma 2, we finally arrive at

⇒
∑
t

(
R(F̃t, W̃t) + µ

n∑
i=1

‖r̃it‖p
)

+ λ
∑
t,s

(
n∑

i=1

‖r̃its‖p
)

≤
∑
t

(
R(Ft,Wt) + µ
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i=1

‖rit‖p
)

+ λ
∑
t,s

(
n∑

i=1

‖rits‖p
)
.

Hence, the value of the objective function in Eq. (5) monotonically decreases
in each iteration.
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