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Abstract—Image inpainting, an image processing technique for
restoring missing or damaged image regions, can be utilized by
forgers for removing objects in digital images. Since no obviously
perceptible artifacts are left after inpainting, it is necessary
to develop methods for detecting the presence of inpainting.
In general, there are two main categories of image inpaint-
ing techniques: exemplar-based and diffusion-based techniques.
Although several methods have been proposed for detecting
exemplar-based inpainting, there is still no effective method
for detecting diffusion-based inpainting. Usually, the tampered
regions manipulated by diffusion-based inpainting techniques
are much smaller than those manipulated by exemplar-based
ones, presenting more challenges in detecting these regions. As
a pioneering attempt, this paper proposes a method for the
localization of diffusion-based inpainted regions in digital images.
We first analyze the diffusion process in inpainting, and observe
that the changes in the image Laplacian along the direction
perpendicular to the gradient are different in the inpainted and
untouched regions. Following this observation, we construct a
feature set based on the intra-channel and inter-channel local
variances of the changes to identify the inpainted regions. Finally,
two effective post-processing operations are designed for further
refining of the localization result. The extensive experimental
results evaluated on both synthetic and realistic inpainted images
show the effectiveness of the proposed method.

Index Terms—Image forensics, Forgery localization, Image
inpainting, Diffusion-based inpainting.

I. INTRODUCTION

IN recent years, the rapid development of image processing
techniques and user-friendly software has facilitated the

conveniences for retouching digital images. However, it has
also led to an increase in image forgeries. Through the use
of image processing tools, even an amateur forger can easily
create a forged image with few visible traces. In order to
address the harmful impacts introduced by maliciously altered
images, image forensics [1], [2] have attracted considerable
attention during the past decade. From a forensic point of
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view, any inherent traces introduced by the image generation
pipeline or left by image processing operations can help in
detecting image forgeries. For example, it is possible to per-
form camera source identification and further identify forgeries
based on the sensor pattern noise (SPN) [3] and color filter
array (CFA) properties [4], [5]; it is possible to detect image
forgeries by analyzing distinct artifacts in JPEG compression
[6], [7], contrast enhancement [8], [9], resampling [10], [11],
and spatial filtering [12], [13]. If an image has inconsistent
SPN or CFA patterns, or is subjected to image processing,
it is very likely to be tampered with. Another approach for
exposing image forgeries is to detect the presence of some
typical tampering operations, such as splicing [14], [15] and
copy-move [16], [17].

When using splicing or copy-move for the removal or
insertion of an object in an image, the forger must carefully
control the process to avoid leaving obvious artifacts such as
inconsistent textures and/or disconnected boundaries. Thus, it
is relatively hard for an amateur to create a perfect forgery.
In the early 2000s, an image processing technique called
image inpainting was developed; this is available within well-
known image editing software such as Photoshop and GIMP.
Image inpainting was originally designed for the restoration of
missing or damaged regions in an image, imitating the work
of art restoration workers. There are two main categories of
image inpainting techniques: diffusion-based techniques [18]–
[20] and exemplar-based techniques [21], [22]. With the help
of image inpainting, one can modify an image using only a
few clicks of the button. Although inpainting is not designed
for falsification, a forger would probably use such a convenient
technique to tamper with an image, such as removing some
objects. Usually, exemplar-based inpainting techniques are
suitable for removing relatively large objects. In many forgery
applications, the targeted objects may be small, and thus the
diffusion-based techniques, which leave very few perceptible
artifacts in small areas, can also serve as powerful tampering
tools. In practice, the credibility of an image must be suspected
if it is detected as being inpainted, since inpainting would
significantly change the contents and semantics. Therefore, it
is valuable to develop forensic methods for the detection of
image inpainting.

Hitherto, only a few works have focused on the forensics
of image inpainting. Some of these have focused on detecting
image inpainting in JPEG images, such as in [23] and [24].
The aim of these studies is to detect double JPEG compression;
the inherent properties of image inpainting have not been
well studied. Therefore, such methods still suffer from some
tough problems in double JPEG compression detection, such
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Fig. 1. An example of inpainting problem. (a) An image to be inpainted; the black region is unknown. (b) The inpainting result; the region surrounded by
the dashed curve is recovered by inpainting.

as double compression with the same quantization matrix.
Moreover, they are not useful when the inpainted image is
not in JPEG format. The other methods for image inpainting
detection, such as [25]–[29], are all designed to deal with the
exemplar-based techniques. The common principle of these
methods is to search similar blocks within the given image,
similar to the block matching process in copy-move detection.
The image block pairs with large matching degrees are then
suspected to be inpainted ones. However, the diffusion-based
inpainting techniques will not generate similar blocks in the
inpainted regions, and thus the existing forensic methods
for exemplar-based techniques cannot be adapted to detect
diffusion-based inpainting. Moreover, the diffusion-based tech-
niques are usually suitable for small areas and thus the size
of inpainted region is rather small, which makes the detection
of diffusion-based inpainting a difficult problem. So far, no
effective method has been proposed for detecting diffusion-
based inpainting.

In this paper, we propose a method for locating the tampered
regions altered by diffusion-based inpainting techniques. We
focus on analyzing the artifacts introduced by diffusion-based
inpainting, which is an important and basic step for subsequent
forensic analysis. By analyzing the basic properties of the
diffusion process, we find that the changes in image Laplacians
along the isophote directions in the inpainted regions are
quite different from those in the untouched regions. Based
on this property, we can extract certain features from such
changes. The feature set consists of both intra-channel and
inter-channel local variances of the changes computed with
different window sizes. Then, we train a classifier to identify
the inpainted pixels using the extracted features. In order to
further improve the performance, we design two effective
post-processing operations to refine the initial results: some
abnormal exposed regions which lead to false alarms are
excluded, and then morphological filtering with adaptive sizes
of structuring elements is performed. Extensive experiments
are conducted to evaluate the proposed method. The results
obtained for 1000 synthetic inpainted images (the inpainted
regions are randomly selected) and 200 realistic inpainted

examples (the inpainted regions contain meaningful contents)
show that the proposed method is effective for detecting
diffusion-based inpainting. We also test the robustness of the
proposed method to some commonly used post operations.
The results show that the proposed method can still identify
the inpainted regions when the images are subject to gamma
correction / rotation / scaling, although producing more false
alarms in some cases. For JPEG compression, the proposed
method suffers from too many false alarms and thus the
performance is poor, which needs to be further improved.

The rest of this paper is organized as follows. Section II
gives a brief introduction to the image inpainting problem and
diffusion-based techniques. Section III presents the details of
the proposed method. Section IV reports and discusses the
experimental results. Finally, concluding remarks are given in
Section V.

II. PRELIMINARIES

A. The Inpainting Problem

Generally, an N ×M image I can be regarded as a two-
dimensional function defined on a domain D, that is

I : D →Rm, (1)

where D = {(x,y)|x = 0,1, . . . ,M;y = 0,1, . . . ,N} ⊂R2 speci-
fies the spatial coordinates of the image pixels, and m is the
number of color channels (m = 1 for a gray image, and m = 3
for an RGB color image).

For the inpainting problem, an image I0 is given as shown
in Fig. 1, in which the pixels in the black region are missing
or contaminated1. Thus, ∃Ω ⊂ D such that for all (x,y) ∈ Ω,
the pixel values I0(x,y) are unknown. Image inpainting aims
to estimate (or recover) the pixel values in the unknown
region Ω using only the information from the known region
S = D−Ω. As an ill-posed inverse problem, image inpainting
does not have a unique solution. That is, the contents of

1It is noted that a very large inpainted region is chosen in this example for
illustration purposes, so that the inpainted region is fairly blurred. In practice,
the inpainted region is usually much smaller, and it is not generally easy to
observe these blurred artifacts.
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the unknown region after inpainting will be different when
different algorithms and parameters are applied. Nevertheless,
the goal of inpainting must be fulfilled, i.e., the inpainted
region is coherent with the known region and is visually
acceptable. The general assumption in image inpainting is that
both the known and unknown regions are consistent in terms of
the structures of their geometry and/or have similar properties
of textural statistics. The diffusion-based methods mainly
exploit smoothness priors and partial differential equation
(PDE) to propagate the structures from the outside to the inside
of the unknown region, while the exemplar-based methods
utilize image statistics and similarity priors to synthesize the
patches in the unknown region. In this paper, we focus on
diffusion-based inpainting and the basic idea of this technique
is introduced in the following subsection.

B. Diffusion-based Inpainting

The basic idea of diffusion-based inpainting is to propagate
local information with smoothness constraints, like heat prop-
agation in physical structures [30]. The propagation process
imitates what is done by art restoration experts. In general,
two issues need to be carefully considered in diffusion-
based inpainting: the first is how to describe the local image
structure, and the second is in which direction the local image
structure should be propagated.

A typical diffusion-based inpainting method was proposed
by Bertalmio et al. [18] in 2000. In this work, the image
Laplacian is used as a smoothness predictor for describing
the local structural information, and an anisotropic model is
employed to propagate the image Laplacian along the direction
of the image isophote, which is perpendicular to the image
gradient in each pixel point. Formally, the algorithm updates
the pixel intensities iteratively inside the unknown region by
solving the following equation,

It+1(x,y) = It(x,y)+ t ′ ·dIt(x,y),∀(x,y) ∈ Ω, (2)

where t is the iteration time, t ′ is the update speed, and dIt(x,y)
is the update signal for It(x,y). dIt(x,y) is given by

dIt(x,y) = ∇(∆It(x,y)) ·∇It⊥(x,y), (3)

where ∇ is the gradient operator, ∆I represents the image
Laplacians, and ∇I⊥ is the isophote direction (perpendicular
to the gradient direction). The term ∇(∆I) · ∇I⊥ represents
the derivative of ∆I in the isophote direction. In the initial
state, t = 0 and It = I0. After several iterations, a convergent
status is obtained such that dIt = 0, and the resulting inpainted
image is defined as the output of the convergent status. After
convergence, there is no variation in the image Laplacians
∆I in the directions of the isophote ∇I⊥, meaning that the
image information (i.e., the Laplacians) is propagated inside
the unknown region in a way that aims to preserve the isophote
directions.

Diffusion-based inpainting methods tend to prolong struc-
tures (e.g., isophotes [18] and curvatures [20]) arriving at the
boundary of the region to be filled in; hence they are suitable
for propagating strong structures, or for filling small regions.
If the region to be completed is large or of complex texture,

∆I(x, y) ∆I(x+1, y)

∆I(x, y+1) ∆I(x+1, y+1)

( , )x y
⊥

∇I
( , )x y∇I

( , )
v v
x y∆I

θ

Fig. 2. Illustration of the calculation of the change in the image Laplacian
along the isophote direction, where ∆ is the Laplacian operator and ∇ is the
gradient operator.

the inpainted region appears blurred after a few diffusion
iterations. Therefore, when such a technique is used for object
removal, the altered region tends to be small, otherwise there
would be obviously visible artifacts. For this reason, we focus
on detecting small inpainted regions in this work.

III. THE PROPOSED METHOD

In this section, we first point out a typical artifact of
diffusion-based inpainting, and then construct a feature set
to identify the inpainted regions and design certain post-
processing operations to refine the localization results.

A. Artifact of Diffusion-based Inpainting

In diffusion-based inpainting, the central concept is to solve
the PDEs for a solution of the unknown regions. Therefore, the
inpainted regions will to some extent suffer from the blurring
effects introduced by the diffusion process. Fig. 1 (b) shows
the typical blurring effects of diffusion-based inpainting, where
we apply inpainting to an extra-large region for illustration
purposes. In fact, such blurring effects also appear when
the inpainted region is small, but are not easily visible to
the human eye. It seems that the blurring artifacts can help
to expose diffusion-based inpainting. However, due to the
diversity of natural image contents, an original image that has
never been inpainted may also contain some smooth regions,
leading to difficulties in effectively detecting and locating the
inpainted regions. In order to differentiate the inpainted regions
from the untouched ones, therefore, we need to analyze the
blurring artifacts left by the diffusion process and investigate
how such artifacts differ from those in the untouched regions.

We take the inpainting algorithm proposed in [18] as a
typical example for analysis. Based on Eq. (2) and (3), we
know that the pixels in the inpainted region will satisfy dIt = 0,
meaning that the image Laplacians will remain constant in the
directions of the isophote. This property, which is expected
not to be held in the untouched regions, leads to the blurring
artifacts in the inpainted regions. To evaluate whether this
property can differentiate inpainted and untouched regions,
we first calculate the change in the image Laplacian along
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Fig. 3. Illustration of the changes in image Laplacians along the isophote directions. (a) An inpainted image with the inpainted region surrounded by the
dashed curve. (b) The map of |δ∆I|. (c) Illustration of the cyan block in (b) with a six-fold enlargement. (d) Illustration of the yellow dashed block in (b)
with a six-fold enlargement. (e) CDF of the variances of untouched blocks. (f) CDF of the variances of inpainted blocks.

the direction of the isophote as illustrated in Fig. 2. For each
image pixel, we compute

δ∆I(x,y) = ∆I(x,y)−∆I(xv,yv),∀(x,y) ∈ D, (4)

where ∆I(x,y) is the value of the image Laplacian for the pixel
with coordinate (x,y), and ∆I(xv,yv) is the value of the image
Laplacian for a virtual pixel point. The virtual pixel is located
at the direction of ∇I⊥(x,y), and its distance between the pixel
I(x,y) is 1 (see the red point in Fig. 2). The coordinate (xv,yv)
is given by (

xv

yv

)
=

(
x+ cosθ
y+ sinθ

)
, (5)

where tanθ = |∇I⊥y(x,y)|/|∇I⊥x(x,y)|, and ∇I⊥x(x,y),
∇I⊥y(x,y) are the projections of the isophote over the horizon-
tal and vertical directions, respectively. The value of ∆I(xv,yv)
is computed with bilinear interpolation as follows,

∆I(xv,yv) =

(
1− cosθ

cosθ

)T

N∆I

(
1− sinθ

sinθ

)
, (6)

where N∆I is given by

N∆I =

(
∆I(x,y) ∆I(x+1,y)
∆I(x,y+1) ∆I(x+1,y+1)

)
. (7)

By applying Eq. (4) to a given image, we can obtain a
map δ∆I, whose absolute values are as shown in Fig. 3 (b).
From Fig. 3 (b), we can observe that the patterns in the
inpainted region and the untouched region are quite different.
In the untouched region, the changes of the image Laplacians
along the isophote directions have large intensities, while the

changes in the inpainted region are of low intensities. Such
phenomena can be clearly observed in two enlarged parts, as
shown in Fig. 3 (c) and (d). From these two sub-figures, we
can further find out that the range (i.e., the difference between
the maximum and minimum values) of the intensities for a
local area in the untouched region is large, while the intensity
range in the inpainted region is relatively small, indicating that
the local variances in the inpainted region should be smaller
than those in the untouched regions. In order to quantitatively
investigate the properties of the map δ∆I, we compute the local
variance for each 8×8 non-overlapping image block, and draw
the curves of the empirical cumulative probability function
(CDF) for the variances of untouched and inpainted blocks,
respectively. The resulting CDF curves are shown in Fig. 3
(e) and (f), from which we can observe that the variances of
the inpainted blocks are close to zero, much less than those
of the untouched blocks.

Based on the above analysis, we conclude that the changes
in the image Laplacians along the direction of isophote (i.e.,
the map δ∆I) can indeed capture the blurring artifacts left
by diffusion-based inpainting, and thus the main idea of the
proposed method is to use such an evidence to detect diffusion-
based inpainting.

B. Feature Extraction and Classification

In the above subsection, we have shown that the map δ∆I
can help in distinguishing between inpainted and untouched
regions. In order to perform automatic and accurate localiza-



1556-6013 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2730822, IEEE
Transactions on Information Forensics and Security

5

0 0.5 1 1.5 2 2.5 3 3.5 4
Local variance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

untouched pixel, w=3×3

inpainted pixel,   w=3×3

untouched pixel, w=9×9

inpainted pixel,   w=9×9

(a)

(c) (d) (e)

(b)

Fig. 4. The local variances of the map δ∆I with different window sizes. (a) Original image. (b) Inpainted image with the inpainted region surrounded by the
dashed square. (c) Local variances computed by window size w = 3×3. (d) Local variances computed by window size w = 9×9. (e) The empirical CDFs
of the local variances of untouched/inpainted pixels with two different window sizes.

tion, we try to extract some statistical features from δ∆I and
perform classification.

Since the previous observations and analysis indicate that
the local variance would be a kind of effective feature, we can
compute the local variances of δ∆I with a sliding window when
giving a suspected image (as shown in Fig. 4 (b)). As a result,
we obtain the maps of local variances as shown in Fig. 4 (c)
and (d), from which we can claim that those pixels associated
with small local variances are inpainted ones. However, a
tricky problem is how to determine the size of the sliding
window. From Fig. 4 (c), we observe that a small window size
(w = 3×3) introduces some local anomalies in the untouched
region. That is, some untouched pixels also produce relatively
small variances; this will lead to false alarms. On the other
hand, Fig. 4 (d) shows that a large window size (w = 9× 9)
results in relatively large variances at the boundary of the
inpainted region; this will lead to missed detections especially
when the inpainted region is small. These two phenomena are
reflected in the curve of the empirical cumulative probability
function (CDF) as shown in Fig. 4 (e). It is therefore shown
that neither the result of w = 9 × 9 nor that of w = 3 × 3
is superior to the other. As a compromise, we use different
window sizes to compute the local variance of δ∆I. It is noted
that we should not use a very large window, because the
inpainted regions in an image (if exist) are usually small and
a too large window size would confuse the local variances in
the inpainted regions with those in the untouched regions.

Given an RGB color image, we firstly compute the intra-
channel local variance of δ∆I. For each color channel c ∈
{1,2,3} and each pixel coordinate (x,y), the intra-channel
local variance with window size w is denoted as σ2

c,w, which

is calculated as

σ2
c,w(x,y) =

1
w2

⌊w
2⌋

∑
i=−⌊w

2⌋

⌊w
2⌋

∑
j=−⌊w

2⌋

(
δ∆Ic(x+i,y+ j)−µc(x,y)

)2
, (8)

where ⌊·⌋ is the rounding operator that rounds a number to
its nearest integer towards negative infinity, δ∆Ic is the c-th
component of δ∆I, and µc is the mean value of δ∆Ic within the
w×w window. In the experiments, we choose w ∈ {3,5,7,9},
producing a 12 (=3×4) dimensional feature for each pixel.

In addition to intra-channel variance, we also consider the
inter-channel local variance ς2

w, which is computed as

ς2
w(x,y) =

1
3w2

3

∑
c=1

⌊w
2⌋

∑
i=−⌊w

2⌋

⌊w
2⌋

∑
j=−⌊w

2⌋

(
δ∆Ic(x+i,y+ j)−µ(x,y)

)2
, (9)

where µ is the mean value of all three components of δ∆I
within the w × w window, i.e., µ(x,y) = 1

3 ∑3
c=1 µc(x,y). In

the experiments, we choose w ∈ {1,3,5,7} to produce a 4-
dimensional feature for each pixel, and thus construct a 16-
dimensional intra-channel and inter-channel local variance
feature.

At this point, we can collect training samples from some
pre-labelled inpainted images. For each training image, we
extract the 16-D features from the untouched pixels as neg-
ative samples and the inpainted pixels as positive samples,
respectively. Then, the positive and negative samples are used
to train a classifier. For an image under investigation, we firstly
extract the features from each of its pixel, and then feed the
features to the trained classifier to predict whether a pixel is
inpainted or not. Finally, we generate a binary localization map
M with the same size of the given image, where the pixels
predicted as inpainted are labelled with the value 1 and the
others are labelled with 0.
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Fig. 5. (a)-(c) Three images with 8×8, 16×16, and 32×32 inpainted regions, respectively. (d)-(f) The corresponding localization maps. (g)-(i) Histograms of
the size of connected components in the localization maps. (j)-(l) The ratios of the histograms to the referenced histograms.

C. Post-Processing

Although we have obtained a localization map as described
in Section III-B, the result is not so satisfactory since there
may be some false alarms or missed detections. Therefore,
we further perform two operations to refine the localization
results, that is, the exclusion of abnormal exposed regions and
morphological filtering.

1) Exclusion of abnormal exposed regions: Sometimes,
there may be underexposed and overexposed regions in an
image, which are presented as very black and very bright
regions, respectively. In such regions, the values of image
Laplacians are close to zeros. Thus, the local variances of δ∆I
will be very small. In this case, the pixels within such regions
will be classified as inpainted ones. In order to re-predict such
pixels as untouched ones, we define a measure of abnormal
exposure E:

E(x,y) =
3

∑
c=1

1

∑
i=−1

1

∑
j=−1

1
(
Ic(x+ i,y+ j)< 10

)
+

3

∑
c=1

1

∑
i=−1

1

∑
j=−1

1
(
Ic(x+ j,y+ j)> 245

)
,

(10)

where 1(·) is an indicator function, and Ic(x,y) is the c-th
component of the pixel intensity at coordinate (x,y). For pixels

with E(x,y) = 27, that is, the values of the RGB components
of their 3×3 neighbors and themselves are all less than 10 or
larger than 245, we treat them as abnormal exposed pixels and
predict them as untouched ones. In this way, the underexposed
and overexposed regions are avoid being erroneously detected
as inpainted regions.

2) Morphological filtering: Another operation to improve
the localization performance is morphological filtering. We
firstly perform erosion to remove some small false-alarmed
regions, and then apply dilation to enlarge the regions detected
as inpainted so that the true positive results will be increased.
The process of morphological filtering can be described as the
following equation,

M̂ =
(
M⊖S(re)

)
⊕S(rd) (11)

where M̂ is the morphological filtered localization map, M is
the input localization map, and S(re) and S(rd) are disk-shaped
structuring elements with radius re and rd , respectively. It is
noted that the size of structuring element will strongly affect
the performance. If the inpainted region is small, we need to
use a small structuring element to avoid the removal of the
actually inpainted region. If the inpainted region is large, we
prefer to use a large structuring element to eliminate more
false-alarmed pixels. Since the size of the inpainted region
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is unknown, we design a method to estimate its size based
on the localization map. We first compute the histogram of
the size of connected components2 in the localization map.
The histogram H is represented with 10 bins, as shown in
Fig. 5 (g)-(i). According to Fig. 5 (d)-(f), the false-alarmed
regions are usually of small sizes and do not connect to
each other. Thus, most of the false-alarmed regions contribute
to the bins representing small sizes in the histogram, while
the inpainted regions are associated to the bins representing
large sizes. Through the use of training images, we can pre-
compute a referenced histogram Hr that only counts the size of
false-alarmed connected components. For a given image, we
compute its histogram of the size of connected components
in the localization map, and obtain the ratio to the referenced
histogram for each bin as R(= H/Hr), as shown in Fig. 5 (j)-
(l). At this point, the sizes of inpainted regions are related to
the positions of local maxima in R, which are denoted as

Λ =
{

λ
∣∣R(λ )> R(λ −1), and R(λ )> R(λ +1),

and λ ∈ {2,3, . . . ,9}
}
,

(12)

where R(λ ) is the λ -th element of R. In the case that there are
several inpainted regions with different sizes, we should select
the sizes of structuring elements based on the smaller one, so
as to avoid using a big structuring element which may erase the
smaller inpainted regions. Therefore, we determine the sizes of
structuring elements based on the first local maximum position
in the bin-to-bin ratio R, i.e., min{Λ}.

IV. EXPERIMENTAL RESULTS

In the experiments, we employed the proposed method to
detect three diffusion-based inpainting algorithms (isotropic,
edge-oriented, and Delaunay-oriented) provided by G’MIC
[31], a full-featured open-source framework for image pro-
cessing. Although these algorithms exploit different models to
describe the structural information for diffusion, they are all
based on the fundamental concepts proposed in [18].

Our objective is to detect and locate the inpainted regions
in an image. The performance is measured by the F1-score

F1 = 2 · precision · recall
precision+ recall

=
2TP

2TP+FN+FP
, (13)

where TP (true positive), FN (false negative), and FP (false
positive) mean the number of detected inpainted pixels, un-
detected inpainted pixels, and wrongly detected untouched
pixels, respectively.

A. Performance for Synthetic Inpainted images

In this experiment, we evaluated the localization perfor-
mance for synthetic inpainted images. We adopted the 1338
color images in the UCID database [32] with sizes of 384×512
or 512×384. 338 images are randomly selected for training the
classifier, as mentioned in Section III-B, and for determining
the sizes of structuring elements, as mentioned in Section
III-C. The rest of the images were used for testing. For each

2A connected component in the localization map is a set of pixels with value
1, where each pixel has at least one 8-adjacent neighbor and its 8-adjacent
neighbors are all in the same set.
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Fig. 6. The F1-score vs. threshold for the sum of ensemble votes.

image in the database, we randomly inpainted one region
within it using the three inpainting algorithms with three
different shapes and four different sizes. The inpainting shapes
are square, circular, and irregular (a solid region with irregular
shape). The inpainting sizes are 64-pixel(px), 256-px, 1024-
px, and 4096-px, which are 0.33‰, 1.30‰, 5.21‰, and 2.08%
of the whole image size, respectively. As a result, we obtain
36 inpainted images from each original image.

For training the classifier, we first extracted the 16-D feature
from each pixel in a training image. Since the training process
is very time-consuming when using all the samples, we kept
only 50 positive samples3 and 50 negative samples for each
image. Hence, we obtained totally 608400 (=338×36×50)
positive samples and 608400 negative samples. We then
trained an ensemble classifier [33] with linear discriminant
analysis base learners using these samples. The resulting en-
semble classifier consisted of 58 base learners, each of which
output either a vote +1 (predicted as positive) or −1 (predicted
as negative). The sum of all votes was then compared to a
threshold for predicting the class of the input pixel. In order
to optimize the performance based on F1-score, we conducted
some preliminary experiments to determine the threshold. Fig.
6 shows the F1-scores obtained by different thresholds (please
note that the F1-scores here were obtained without the post-
processing operations introduced in Section III-C), from which
we observe that the performance is improved by increasing the
threshold and the highest average F1-score is obtained with
the threshold of 50. Therefore, we choose 50 as the threshold
for the sum of ensemble votes, i.e., a pixel is predicted as
inpainted when the sum of the votes is larger than or equal to
50.

By using the trained classifier, we obtained an initial
localization map for each training image. Subsequently, we
excluded the abnormal exposed regions in the localization
maps as described in Section III-C (a). And then, we computed
a referenced histogram based on the false-alarmed connected
components. By comparing the histograms of connected com-

3The maximum number of positive samples in an image vary from 64 to
4096 according to the inpainting size. In order to avoid bias for inpainting size
in the training process, we use the same samples (i.e., 50) for every image.
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TABLE I
F1-SCORES OBTAINED ON THE UCID DATABASE FOR DIFFERENT INPAINTING ALGORITHMS, INPAINTING SHAPES AND SIZES.

Algorithm Isotropic Edge-oriented Delaunay-oriented

Shape square circular irregular square circular irregular square circular irregular

Size = 4096-px 0.9015 0.8980 0.8861 0.8938 0.8906 0.8753 0.8211 0.8714 0.8350
Size = 1024-px 0.8131 0.8097 0.7831 0.8023 0.7978 0.7654 0.6194 0.7038 0.6815
Size = 256-px 0.6964 0.6961 0.6533 0.6863 0.6856 0.6302 0.3359 0.3399 0.4042
Size = 64-px 0.4248 0.5230 0.1831 0.3339 0.4389 0.1582 0.0975 0.1262 0.0763

TABLE II
THE DEGRADATIONS OF F1-SCORES WITHOUT MORPHOLOGICAL FILTERING.

Algorithm Isotropic Edge-oriented Delaunay-oriented

Shape square circular irregular square circular irregular square circular irregular

Size = 4096-px ↓0.0414 ↓0.0331 ↓0.0497 ↓0.0481 ↓0.0421 ↓0.0561 ↓0.0704 ↓0.0594 ↓0.0649
Size = 1024-px ↓0.0856 ↓0.0744 ↓0.0931 ↓0.0913 ↓0.0819 ↓0.0956 ↓0.1117 ↓0.1098 ↓0.1067
Size = 256-px ↓0.1727 ↓0.1636 ↓0.1916 ↓0.1783 ↓0.1712 ↓0.1879 ↓0.1283 ↓0.1219 ↓0.1473
Size = 64-px ↓0.2150 ↓0.2486 ↓0.0883 ↓0.1677 ↓0.2043 ↓0.0762 ↓0.0483 ↓0.0621 ↓0.0382

TABLE III
THE DEGRADATIONS OF F1-SCORES WITHOUT EXCLUSION OF ABNORMAL EXPOSED REGIONS AND MORPHOLOGICAL FILTERING.

Algorithm Isotropic Edge-oriented Delaunay-oriented

Shape square circular irregular square circular irregular square circular irregular

Size = 4096-px ↓0.1423 ↓0.1348 ↓0.1487 ↓0.1454 ↓0.1396 ↓0.1508 ↓0.1627 ↓0.1576 ↓0.1585
Size = 1024-px ↓0.2215 ↓0.2122 ↓0.2225 ↓0.2231 ↓0.2151 ↓0.2201 ↓0.2102 ↓0.2248 ↓0.2160
Size = 256-px ↓0.2999 ↓0.2929 ↓0.3034 ↓0.3008 ↓0.2952 ↓0.2944 ↓0.1735 ↓0.1700 ↓0.2058
Size = 64-px ↓0.2704 ↓0.3234 ↓0.1109 ↓0.2110 ↓0.2656 ↓0.0946 ↓0.0581 ↓0.0748 ↓0.0450

ponents in the localization maps for the training images to
the referenced histogram, we found that the 64-px and 256-px
inpainted regions respectively produce the first local maximum
in the bin-to-bin ratio at the 3rd and 5th bins (i.e., min{Λ}= 3
and min{Λ} = 5), while the 1024-px and 4096-px inpainted
regions usually lead to min{Λ} ≥ 8. Hence, we set three
different sizes for the structuring elements. Via searching
the optimal sizes on the training images, for an image with
min{Λ} ≤ 3, we set re = 1 and rd = 4; for an image with
3 < min{Λ} ≤ 5, we set re = 2 and rd = 5; for the rest of the
cases, we set re = 4 and rd = 6.

Based on the trained classifier and the pre-set parameters
at hand, we detected and located the inpainted regions in the
testing images. For each inpainting algorithm, and each shape
and size of the inpainted region, 1000 testing images were
analyzed. The false positive (false alarm) rates for different
cases ranges from 0.73% to 0.85%, and the average false pos-
itive rate is 0.78%, meaning that only a very small proportion
of the untouched pixels are mistakenly detected as inpainted
ones. The resulting F1-scores for different cases are shown in
Table I. We observe that the size of the inpainted region is
the main factor influencing the localization performance. Fig.
7 shows the box plots of F1-scores for different inpainting
sizes, from which we can observe that the best F1-scores
are close to 1 and the worst ones are 0, while the average
F1-score becomes larger when the inpainting size increases.
For 4096-px inpainted regions, we can achieve the average
F1-score of 0.8748, meaning that the proposed method can

effectively locate the inpainted regions. However, we merely
obtain the average F1-score of 0.2624 for 64-px inpainted
regions, because the inpainting size is very small so that much
fewer tampering artifacts are left. We note that even the F1-
score is lower than 0.3 in this case, it is still possible to
figure out the inpainted region based on the localization map.
Please refer to the realistic examples shown in Fig. 8 and
Fig. 9. Regarding different inpainting shapes, the average F1-
scores for square, circular, and irregular shapes are 0.6188,
0.6484, and 0.5776, respectively. The irregular shape degrades
the performance, but the influence is not as significant as for
different inpainting sizes. In comparing the results for different
inpainting algorithms, it is shown that the performance for
the Delaunay-oriented method is relatively poor. Nevertheless,
we can achieve the average F1-score of 0.6682 when the
inpainting size is 1024-px, meaning that in this case the
inpainted region can still be satisfactorily identified by the
proposed method.

In order to evaluate the necessity of the application of
post-processing, we tested the performance of two variants
of the proposed method, i.e., without morphological filtering
and without any post-processing. Under the test conditions
described above, the performance degradations of the two
variants compared to the proposed method are shown in Tables
II and III, respectively. We can observe that the localization
performance is distinctly degraded when the post-processing
operations are omitted. On average, omitting the morpholog-
ical filtering leads to a decrement of 0.11 for the F1-score,
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TABLE IV
F1-SCORES FOR THE EXEMPLAR-BASED INPAINTING METHOD IN [26] OBTAINED ON THE UCID DATABASE FOR DIFFERENT INPAINTING ALGORITHMS,

INPAINTING SHAPES AND SIZES.

Algorithm Isotropic Edge-oriented Delaunay-oriented

Shape square circular irregular square circular irregular square circular irregular

Size = 4096-px 0.0261 0.0208 0.0209 0.0325 0.0278 0.0237 0.0133 0.0137 0.0139
Size = 1024-px 0.0201 0.0160 0.0157 0.0147 0.0094 0.0112 0.0073 0.0079 0.0080
Size = 256-px 0.0028 0.0018 0.0018 0.0023 0.0017 0.0022 0.0009 0.0009 0.0012
Size = 64-px 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

TABLE V
F1-SCORES FOR THE MEDIAN FILTERING DETECTION METHOD IN [13] OBTAINED ON THE UCID DATABASE FOR DIFFERENT INPAINTING ALGORITHMS,

INPAINTING SHAPES AND SIZES.

Algorithm Isotropic Edge-oriented Delaunay-oriented

Shape square circular irregular square circular irregular square circular irregular

Size = 4096-px 0.7377 0.7369 0.7156 0.7295 0.7270 0.7053 0.7582 0.6936 0.7036
Size = 1024-px 0.5475 0.5441 0.5219 0.5404 0.5307 0.5076 0.5828 0.4733 0.4805
Size = 256-px 0.3123 0.3162 0.2956 0.3079 0.3052 0.2821 0.3744 0.2915 0.2545
Size = 64-px 0.0919 0.1253 0.0870 0.0799 0.1127 0.0752 0.1260 0.1312 0.0531
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Fig. 7. Box plots of F1-scores for different inpainting sizes. The black
asterisks represent the mean values.

while the omission of both post-processing operations leads to
an additional decrement of 0.09. With regard to the three sizes
of inpainted region, the performance for the 256-px region is
influenced most obviously by the post-processing operations.
The average F1-score drops 0.16 when the morphological
filtering is left out and drops 0.26 when no post-processing
is applied.

At last, we compared the performance of the proposed
method to two related methods: the exemplar-based inpainting
detection method [26] and the median filtering detection
method [13]. The default parameters reported in [26] and [13]
were used, except that a 8×8 sliding window with a step of 4-
px was used with the method [13] since the smallest inpainted
region was 64-px (equivalent to 8×8-px). The F1-scores
obtained with the two methods are shown in Tables IV and V,
respectively. From Table IV, we can observe that the method in
[26], designed for the detection of exemplar-based inpainting,
totally fails to detect diffusion-based inpainting, where the
highest F1-score is only 0.0325. As the inpainted regions
present some blurring artifacts, it is expected that median
filtering detection methods (such as [13]) can identify them
more or less. However, since the filtering detection method

is not specially designed for diffusion-based inpainting, its
performance may not be satisfactory. From Table V we can
observe that the method in [13] can achieve the performance
comparable with the proposed method for Delaunay-oriented
inpainting when the inpainting size is less than 1024-px, while
its performance for other cases are obviously poorer. Such
results indicate that the existing filtering detection methods
are still not suitable for detecting and locating the diffusion-
based inpainted regions.

B. Performance for Realistic Forgeries

In this experiment, we evaluated the proposed method
with some realistic inpainted images. We chose 100 images
from the UCID database and 100 images the BossBase
database [34]. The images in BossBase were originally stored
in raw format and with sizes ranging from 2000×3008 to
5212×3468, which were converted into RGB TIFF images in
this experiment. Within each of the 200 images, we selected
one or several objects for removal with inpainting. All of the
selected objects contained meaningful content, for example
a flower on the ground, the window of a house, and so on.
Since diffusion-based inpainting is suitable for small regions,
the largest size of the selected objects was about 1% of the
whole image size. We respectively used the three inpainting
algorithms to inpaint the selected regions, and thus generated
600 inpainted images. In the first rows of Fig. 8 and Fig. 9, we
show some examples of the inpainted images. We can observe
that it is hard to identify the inpainted regions by human eye.

We detected the inpainted images with the same classifier
and parameters obtained from the training set of UCID syn-
thetic images (used in the previous experiment). The resulting
false positive rate is also very low. The average false positive
rate is 0.35% for the images from UCID, and 1.59% for the
images from BossBase. The false positive rate for BossBase
is larger than that for UCID. The images from BossBase have
higher resolution and higher quality, and thus less noise is
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Fig. 8. Examples from the UCID database. Row 1: inpainted images. Row 2: localization results, where the pixels in white, black, yellow, and red indicate
true positive, true negative, false positive, and false negative, respectively. Row 3: the enlarged parts of the ordinal regions, the inpainted regions, and the
localization results. The F1-scores for these examples are 0.2348, 0.5792, 0.7064, 0.8750, 0.9059, respectively.

Fig. 9. Examples from the BOSS database. Row 1: inpainted images. Row 2: localization results, where the pixels in white, black, yellow, and red indicate
true positive, true negative, false positive, and false negative, respectively. Row 3: the enlarged parts of the ordinal regions, the inpainted regions, and the
localization results. The F1-scores for these examples are 0.2713, 0.4690, 0.6801, 0.7339, 0.9759, respectively.

introduced by the imaging pipeline, leading to slightly more
false alarms. This phenomenon can be figured out in the results
shown in the second row of Fig. 9, where there are several
false-alarmed regions outside the inpainted regions. As for
the localization performance, the average F1-scores for UCID
and BossBase are 0.6562 and 0.5380, respectively. Referring
to the examples shown in Fig. 8 and Fig. 9, the cases with
F1-scores larger than 0.6 indicate that the inpainted regions
can be satisfactorily identified. Although there are some small
false-alarmed regions, they do not prevent the identification
of the inpainted regions. In the cases with low F1-scores (for
example, lower than 0.3), the false-alarmed regions seem to be
larger, although the inpainted regions can still be detected. On
the whole, the experimental results show that the proposed
method can effectively detect and locate the regions altered
with diffusion-based inpainting in realistic cases.

C. Computation time

In this subsection, we report the computation time of the
proposed method for images of different sizes. On a server
equipped with Intel Xeon E5-2690 CPU, 64 GB RAM and
Matlab 2015b, we tested five sets of images with size of
256×256, 384×512, 512×512, 1024×1024, 2048×2048, re-
spectively. Each image set contained 100 images. We recorded
the computation time for feature extraction, classification, and
the two post-processing operations, and show the average
computation time in Fig. 10. From this figure, it is observed
that the computation time is almost proportional to the total
number of pixels within an image, except for morphological
filtering on images of 256×256. Among the four processes,
feature extraction and classification take the dominant part
of computation time. For example, the feature extraction
and classification for a 384×512 image (the same size of
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Fig. 10. The computation time for images of different sizes. Post-processing
#1 and #2 mean “exclusion of abnormal exposed regions” and “morphological
filtering”, respectively.

TABLE VI
THE F1-SCORES AND DEGRADATIONS COMPARED TO PLAIN INPAINTING

FOR GAMMA CORRECTED IMAGES.

γ = 0.8

Algorithm Isotropic Edge-oriented Delaunay-oriented

4096-px 0.8464 (↓0.0488) 0.8296 (↓0.0570) 0.7674 (↓0.0751)
1024-px 0.7167 (↓0.0853) 0.6876 (↓0.1009) 0.5366 (↓0.1316)
256-px 0.5777 (↓0.1042) 0.5517 (↓0.1157) 0.2526 (↓0.1074)
64-px 0.2872 (↓0.0898) 0.2260 (↓0.0843) 0.0609 (↓0.0391)

γ = 1.2

Algorithm Isotropic Edge-oriented Delaunay-oriented

4096-px 0.8914 (↓0.0038) 0.8717 (↓0.0149) 0.8152 (↓0.0273)
1024-px 0.7920 (↓0.0099) 0.7625 (↓0.0260) 0.6150 (↓0.0532)
256-px 0.6772 (↓0.0047) 0.6527 (↓0.0147) 0.3398 (↓0.0202)
64-px 0.3780 (↑0.0011) 0.3056 (↓0.0048) 0.0946 (↓0.0054)

the images in UCID database) need about 2.8s and 1.8s,
respectively, while the two post-processing operations only
take 0.001s and 0.023s. Totally, the computation time for a
384×512 image is about 4.6s.

D. Robustness analysis

In this subsection, we test the robustness of the proposed
method to image enhancement (gamma correction), rotation,
scaling, and JPEG compression. We respectively applied these
post operations to the inpainted images, and performed the
localization using the previous model trained on the inpainted
images without any post operation. The detailed results and
analysis are as follows.

1) Robustness to gamma correction: In this experiment,
we applied gamma correction to the inpainted images with
parameters γ=0.8 and γ=1.2, respectively, and then tested the
proposed method on the gamma corrected inpainted images.
The obtained F1-scores for different inpainting algorithms and
inpainting sizes are shown in Table VI4. From this table,

4Due to page limitation, we do not show the F1-scores for different
inpainting shapes independently. For each inpainting algorithm and size, the
F1-score reported in the table is the average result for different shapes.

TABLE VII
F1-SCORES AND DEGRADATIONS COMPARED TO PLAIN INPAINTING FOR

ROTATED IMAGES.

rotation angle = 5◦

Algorithm Isotropic Edge-oriented Delaunay-oriented

4096-px 0.7275 (↓0.1677) 0.7179 (↓0.1687) 0.6846 (↓0.1579)
1024-px 0.5465 (↓0.2555) 0.5342 (↓0.2543) 0.4537 (↓0.2145)
256-px 0.3771 (↓0.3048) 0.3655 (↓0.3019) 0.2044 (↓0.1556)
64-px 0.1431 (↓0.2339) 0.1093 (↓0.2011) 0.0334 (↓0.0666)

rotation angle = 30◦

Algorithm Isotropic Edge-oriented Delaunay-oriented

4096-px 0.7851 (↓0.1101) 0.7754 (↓0.1111) 0.7238 (↓0.1187)
1024-px 0.6261 (↓0.1759) 0.6088 (↓0.1797) 0.4945 (↓0.1737)
256-px 0.4689 (↓0.2130) 0.4509 (↓0.2165) 0.2290 (↓0.1310)
64-px 0.1495 (↓0.2274) 0.1082 (↓0.2021) 0.0348 (↓0.0652)

TABLE VIII
THE F1-SCORES AND DEGRADATIONS COMPARED TO PLAIN INPAINTING

FOR SCALED IMAGES.

scaling factor = 0.9

Algorithm Isotropic Edge-oriented Delaunay-oriented

4096-px 0.8322 (↓0.0630) 0.8211 (↓0.0654) 0.7758 (↓0.0667)
1024-px 0.6879 (↓0.1141) 0.6676 (↓0.1209) 0.5503 (↓0.1179)
256-px 0.5292 (↓0.1528) 0.5079 (↓0.1594) 0.2580 (↓0.1020)
64-px 0.1431 (↓0.2338) 0.1135 (↓0.1968) 0.0407 (↓0.0593)

scaling factor = 1.1

Algorithm Isotropic Edge-oriented Delaunay-oriented

4096-px 0.6829 (↓0.2123) 0.6764 (↓0.2101) 0.6497 (↓0.1928)
1024-px 0.4770 (↓0.3250) 0.4693 (↓0.3192) 0.4105 (↓0.2577)
256-px 0.2960 (↓0.3860) 0.2880 (↓0.3794) 0.1709 (↓0.1891)
64-px 0.1230 (↓0.2540) 0.0969 (↓0.2134) 0.0275 (↓0.0725)

we can observe that the F1-scores for the case of γ=1.2
are nearly the same as those without gamma correction (the
maximum degradation is about 0.05), while F1-scores for
γ=0.8 encounter sensible degradations. However, the localiza-
tion results are still satisfactory. On average, the degradations
for 4096-px, 1024-px, 256-px, and 64-px inpainted regions are
0.06, 0.10, 0.11, and 0.07, respectively.

2) Robustness to rotation: In this experiment, we respec-
tively rotated the inpainted image with two rotation angles
(i.e., 5◦ and 30◦) using bilinear interpolation, and then applied
the proposed method to the two sets of rotated images and
obtained the F1-scores as shown in Table VII. Comparing to
the results for detecting plain inpainting, the average degra-
dation of F1-scores for rotation with 5◦ and 30◦ are 0.21 and
0.16, respectively. When the inpainting regions are of 64-px,
the obtained F1-scores are lower than 0.2, meaning that the
localization results are not reliable enough in these cases. For
the isotropic and edge-oriented inpainting, the F1-scores are
very close to or larger than 0.4 when the inpainting sizes are
larger than 1024-px, meaning that in such cases the inpainted
regions can also be detected with our method.

3) Robustness to scaling: In this experiment, the investi-
gated inpainted images were scaled with bilinear interpolation
algorithm. Two scaling factors were tested, i.e., 0.9 and 1.1.
The F1-scores obtained on the scaled inpainted images are
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Fig. 11. The changes in image Laplacians along the isophote directions for the non-compressed image in Fig. 1 (b) and its JPEG compressed version.

TABLE IX
THE F1-SCORES AND DEGRADATIONS COMPARED TO PLAIN INPAINTING

FOR JPEG COMPRESSED IMAGES.

QF = 100

Algorithm Isotropic Edge-oriented Delaunay-oriented

4096-px 0.4328 (↓0.4624) 0.4103 (↓0.4763) 0.2882 (↓0.5543)
1024-px 0.3149 (↓0.4871) 0.2812 (↓0.5073) 0.1698 (↓0.4985)
256-px 0.2329 (↓0.4491) 0.2016 (↓0.4657) 0.0774 (↓0.2826)
64-px 0.1129 (↓0.2641) 0.0616 (↓0.2487) 0.0098 (↓0.0902)

QF = 90

Algorithm Isotropic Edge-oriented Delaunay-oriented

4096-px 0.2172 (↓0.6780) 0.1713 (↓0.7153) 0.1472 (↓0.6953)
1024-px 0.0855 (↓0.7165) 0.0631 (↓0.7254) 0.0427 (↓0.6255)
256-px 0.0230 (↓0.6589) 0.0206 (↓0.6468) 0.0093 (↓0.3507)
64-px 0.0036 (↓0.3734) 0.0030 (↓0.3074) 0.0013 (↓0.0987)

shown in Table VIII. From Table VIII, we can observe that up-
scaling results in poorer performance than down-scaling, since
up-scaling would introduce more blurring artifacts, leading to
more false alarms. For down-scaling with the factor 0.9, the
propose method can achieve F1-scores larger than 0.5 when the
inpainted size is larger than 256-px (except for the Delaunay-
oriented inpainting), meaning that the localization performance
is still satisfactory. For up-scaling with the factor 1.1, the
proposed method can reliably identify the inpainted regions
when their sizes are larger than 1024-px.

4) Robustness to JPEG compression: In this experiment,
we first compressed the inpainted images to JPEG images
with two quality factors (QF) 100 and 90, respectively. Then
we applied the proposed method to the JPEG compressed
inpainted images and obtained the F1-scores as shown in Table
IX. It is observed that JPEG compression would significantly
degrade the localization performance. When the size of in-

painted region is 4096-px, the average F1-score for QF=100
is 0.3771, while the average F1-score for QF=90 is only
0.1786. For QF=100, the proposed method can still obtain the
average F1-score of 0.1706 when the inpainting size is 256-
px. However, for QF=90, the proposed method nearly fails to
locate the inpainted regions when the inpainting size is smaller
than 4096-px. The main reason for such poor performance is
that the tampered regions are relatively small (i.e., insufficient
statistics), and the JPEG compression would suppress the
high-frequency component. Therefore, when computing the
changes of image Laplacians along the isophote directions,
some untouched smooth regions will present small values
and low local variances, which would be confused with
the inpainted regions. In Fig. 11, we show the changes in
image Laplacians along the isophote directions for the non-
compressed image in Fig. 1 (b) and its JPEG compressed
version. From subfigures (a), (b) and (c), we observe that
the changes of image Laplacians along the isophote directions
in the sky and sand beach areas are very similar to those in
the inpainted regions after JPEG compression. By comparing
the empirical probability density function of block variances
shown in subfigures (d)-(f), we observe that the distributions of
variances in inpainted and untouched blocks are quite different
before JPEG compression, but they become more similar after
JPEG compression. Therefore, it will result in many false
alarms for the JPEG compressed images and lead to poor
localization performance.

We show some example localization maps in Fig. 12.
Compared with the results obtained on plain inpainted images,
the proposed method can still identify the inpainted regions
when the images were undergone gamma correction / rotation
/ scaling, although producing more false alarms in some
cases. For JPEG compressed inpainted images, the localization
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Plain (0.8308) GC 0.8 (0.8333) GC 1.2 (0.8352) Sca 0.9 (0.5890)

Rot 5° (0.5665) Rot 30° (0.3591) JPEG 90 (0) JPEG 100 (0.4264)Sca 1.1 (0.3104)

Plain (0.7679) GC 0.8 (0.8797) GC 1.2 (0.8924) Sca 0.9 (0.7919)

Rot 5° (0.8007) Rot 30° (0.8801) JPEG 90 (0.4162) JPEG 100 (0.6948)Sca 1.1 (0.6667)

Fig. 12. Example localization maps for different scenarios. The values in parentheses are the obtained F1-scores. The arrows point to the inpainted regions.

results are barely satisfactory when QF=100; when QF=90, too
many false alarms appear and thus the performance is poor.
In many existing forensic techniques, such as the methods
for detecting exemplar-based inpainting, image splicing and
camera identification, the detection/localization performance
would usually drop a lot after some post operations, especially
when the tampered region is small. The authors believe that
this work is still important since this is the first step to
analyze the tampering artifacts introduced by the diffusion-
based inpainting. In the next step, we try to develop some
methods to improve the localization performance after some
post operations, especially for JPEG compression. For exam-
ple, combining the proposed method with some JPEG forgery
localization methods.

V. CONCLUSION

In this paper, we have proposed a novel method for the
localization of diffusion-based inpainting in digital images.
This is the first report devoted to this forensic problem.
The proposed method employs some natural artifacts left
by the diffusion-based inpainting and designs discriminative
features for identifying the inpainted region as well as effective

post-processing for refining the localization result. The main
contributions of this paper are as follows:

• We have analyzed the diffusion process used in diffusion-
based inpainting methods and found that the changes
of image Laplacians along the isophote directions are
different in the inpainted regions and the untouched
regions. This property is the key for detecting diffusion-
based inpainting.

• We have adopted the intra-channel and inter-channel local
variances as the discriminative features for distinguishing
between the inpainted pixels and the untouched pixels.
Thus, we can generate a localization map that basically
shows the inpainted regions.

• We have introduced the exclusion of the abnormal ex-
posed regions from the localization map, and the refining
of the result using morphological filtering with adaptive
sizes of the structuring elements. In this way, the local-
ization performance can be further improved.

We have evaluated the proposed method for synthetic in-
painted images as well as some realistic examples. The exper-
imental results show that the proposed method is effective for
detecting diffusion-based inpainting.
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In the future, we will further improve the performance via
combining with certain other techniques, such as image seg-
mentation and computer vision. Besides, since the localization
performance would be degraded by some post operations, we
will enhance the robustness of the proposed method, especially
for the robustness to JPEG compression.
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