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Abstract – This paper proposes a new framework for digital 

image processing; it relies on inexact computing to address some 
of the challenges associated with the discrete cosine transform 
(DCT) compression. The proposed framework has three levels of 
processing; the first level uses approximate DCT for image 
compressing to eliminate all computational intensive floating-
point multiplications and executing the DCT processing by 
integer additions and in some cases logical right/left shifts.  The 
second level further reduces the amount of data (from the first 
level) that need to be processed by filtering those frequencies that 
cannot be detected by human senses. Finally, to reduce power 
consumption and delay, the third level introduces circuit level 
inexact adders to compute the DCT. For assessment, a set of 
standardized images are compressed using the proposed three-
level framework. Different figures of merits (such as energy 
consumption, delay, power-signal-to-noise-ratio, average-
difference, and absolute-maximum-difference) are compared to 
existing compression methods; an error analysis is also pursued 
confirming the simulation results. Results show very good 
improvements in reduction for energy and delay, while 
maintaining acceptable accuracy levels for image processing 
applications. 

Keywords—Approximate Computing, DCT, Inexact Computing, 
Image Compression, 

I. INTRODUCTION1 
Today’s computing system usually process a significant 

amount of information that is computational and power 
intensive. Digital Signal Processing (DSP) systems are widely 
used to process image and video information, often under 
mobile/wireless environments. These DSP systems use 
image/video compression methods and algorithms. However, 
the demands of power and performance remain very stringent. 
Compression methods are often utilized to alleviate such 
requirements. Image/video compression methods fall into two 
general categories: lossless and lossy. The latter category is 
more hardware efficient but at the expense of quality of the 
final decompressed images/videos. For image processing, the 
Joint Photographic Experts Group (JPEG) method is the 
widely used lossy method while the Moving Picture Experts 
Group (MPEG) method is the widely used lossy method for 
video processing. Both standards use the Discrete Cosine 
Transform (DCT) algorithm as basic processing step. 

Many different fast algorithms for DCT [1][2] computation 
have been developed for image and video applications; 
however as all these algorithms still need floating point 
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multiplications; they are computationally intensive requiring 
extensive hardware resources. To address these concerns, 
coefficients in many algorithms such as [3] can be scaled and 
approximated by integers such that floating-point 
multiplications can be replaced by integer multiplications 
[4][5]. The resulting algorithms are significantly faster than 
the original versions and, therefore, they are extensively used 
in practical applications. Consequently, the design of good 
approximations of the DCT for implementation by narrower 
bus width and simpler arithmetic operations (such as shift and 
addition) has received considerable attention over the last few 
years [6]. 

An advantageous feature of image/video processing is its 
highly error-tolerant nature; human senses cannot often 
perceive degradation in performance, such as quality of visual 
and audio information. Therefore, imprecise computation can 
be used in many applications that tolerate some loss of 
precision and some degree of uncertainty, [7][8], such as for 
example image/video processing.  

The introduction of inaccuracy at circuit level in the DCT 
computation targets specific figures of merit (such as power 
dissipation, delay and circuit complexity [9]-[14]) and it is 
very challenging. This scheme targets low power and process 
tolerance is based on a logic/gate/transistor level redesign of 
an exact circuit. A logic synthesis approach [9] has been 
proposed to design circuits for implementing an inexact 
version of a given function by considering the so-called error 
rate (ER) as metric for error tolerance. Reduction in circuit 
complexity at transistor level of an adder circuit (such as by 
truncating the circuits at the lowest bit positions) provides a 
reduction in power dissipation higher than conventional low 
power design techniques [10]; in addition to the ER, new 
figures of merit for estimating the error in an inexact adder 
have been presented in [11].  

 [10] has presented an approximate mirror adder (AMA) 
circuit that utilizes cell replacement by reducing adder cell 
circuit complexity compared to a traditional mirror adder 
(MA) scheme. Cell replacement usually provides a shorter 
critical path; it also enables voltage scaling and reduces the 
switching capacitance. [13] has proposed “approximate” adder 
cells (AXA) based on XOR and XNOR implementations; 
node capacitances and power are also reduced in the AXA 
designs of  [13].  

As relevant to this manuscript, [14] has designed an adder 
cell circuit with a lower number of transistors such that a 
reduction in power dissipation is also accomplished. In [14], 
three new inexact adder cell designs have been presented; they 
are very favorable for approximate computing in terms of both 
electrical and error features. Particularly they requires a 
significantly reduced number of transistors, a small number of 
erroneous outputs and incur in a substantial reduction in both 
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delay and energy dissipation. There is an extensive literature 
on inexact/approximate computing and related hardware 
design [9]-[15]; however in these papers, the degree of 
inexactness/approximation is usually restricted to arithmetic 
functions and/or the final objective(s) is reducing specific 
figures of merit (such as power/energy consumption, error and 
delay) mostly at circuit-level. This type of analysis assumes a 
flat view of operation because it does not take account that 
many domains of approximation are possible once a specific 
application (and related algorithms) is considered. This 
manuscript considers DCT (as one of the most commonly 
used processing algorithms in DSP) by expanding the domains 
of approximation into a more comprehensive framework. 
Therefore, this paper presents a new framework for 
approximate DCT image compression; this framework is 
based on inexact computing and consists of three levels. 
• Level 1 consists of a multiplier-less DCT transformation, 

so involving only additions; 
• Level 2 consists of high frequency component 

(coefficient) filtering; 
• Level 3 consists of computation using inexact adders. 
Level 1 has been widely studied in the technical literature 

[16][17][18]; Level 2 is an intuitive technique to reduce the 
complexity of computation while attaining only a marginal 
degradation in image compression. Level 3 follows a circuit-
level technique by which inexact computation is pursued 
(albeit new and efficient inexact adder cells are utilized in this 
manuscript). Therefore, the contribution of this manuscript is 
found in the combined effects of these three levels. The 
proposed framework has been extensively analyzed and 
evaluated. Simulation and error analysis show a remarkable 
agreement in results for image compression as an application 
of inexact computing. 

Hereafter to avoid confusion the word “approximate” is 
used only for the DCT algorithms while the word “inexact” is 
used for circuits and design involving non-exact hardware for 
computing the DCT. 

This paper is organized as follows: Section II presents the 
review of DCT, while approximate DCT implementation 
using inexact adders are dealt with in Section III. The 
proposed framework is presented in Section IV, and its 
evaluation in Section V.  Finally, the conclusion is provided in 
Section VI. 

II. REVIEW OF DCT 
For manuscript completeness, preliminaries to approximate 
DCT and a review of relevant topics are presented next. 

A. Discrete Cosine Transform (DCT) 
To obtain the ith and jth DCT transformed elements of an 

image block (represented by a matrix p of size N), the 
following equation is used: 
  

𝐷𝐷(𝑖𝑖, 𝑗𝑗) =
1

√2𝑁𝑁
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where p(x, y) is the x,yth element of the image. This equation 
calculates one entry (i,jth) of the transformed image from the 
pixel values of the original image matrix.  For the commonly 
used 8x8 block for JPEG compression, N is equal to 8 and x 
and y range from 0 to 7. Therefore D(i,j) is also given by the 
following equation: 
𝐷𝐷(𝑖𝑖, 𝑗𝑗) = 1

4
𝐶𝐶(𝑖𝑖)𝐶𝐶(𝑗𝑗)∑ ∑ 𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑐𝑐𝑐𝑐𝑐𝑐 �𝜋𝜋(2𝑥𝑥+1)𝑖𝑖

16
� 𝑐𝑐𝑐𝑐𝑐𝑐 �𝜋𝜋(2𝑦𝑦+1)𝑗𝑗

16
�7

𝑗𝑗=0
7
𝑖𝑖=0  (2) 

 
For matrix calculations, the DCT matrix is obtained from 

the following equation: 

𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖, 𝑗𝑗) = �
1 √𝑁𝑁⁄ , 𝑖𝑖 = 0

�2
𝑁𝑁
𝑐𝑐𝑐𝑐𝑐𝑐 �𝜋𝜋(2𝑗𝑗+1)𝑖𝑖

2𝑁𝑁
� , 𝑖𝑖 > 0

 (3) 

So, DCT is computation intensive and may require floating-
point operations for processing, unless an approximate 
algorithm is utilized. 

B. Joint Photographic Experts Group (JPEG) 
The JPEG processing is first initiated by transforming an 

image to the frequency domain using the DCT; this separates 
images into parts of differing frequencies. Then, the 
quantization is performed such that frequencies of lesser 
importance are discarded. This reflects the capability of 
humans to be reasonably good at seeing small differences in 
brightness over a relatively large area, but they usually cannot 
distinguish the exact strength of a rapidly varying brightness 
variation. The compression takes place during this 
quantization step in which each component in the frequency 
domain is divided by a constant, and then rounded to the 
nearest integer. This results in many high frequency 
components having very small or likely zero values, small 
values at best. The image is then retrieved during the 
decompression process that is performed using only the 
important frequencies that have been retained.  

For JPEG processing, the following steps must be executed: 
1. An image (in color or grey scales) is first subdivided into 

blocks of kxk pixels (usually k=8).  
2. Then from left to right and top to bottom, the DCT is 

applied to each block.  
3. This generates kxk coefficients (so 64 for k=8) that are 

then quantized to reduce the magnitudes.  
4. The resulting array of compressed blocks represents the 

compressed image, i.e.  the stored or transmitted image.  
5. To retrieve the image, the compressed image (array of 

blocks) is decompressed using Inverse DCT (IDCT). 
 
Many different fast algorithms for DCT [1][2] computation 

have been developed for image and video applications. The 
method proposed by Loeffler et al. [19] requires 11 
multiplications and 29 additions and it is regarded the most 
efficient because the theoretical lower bound on the number of 
multiplications required for the 1-D eight-point DCT has been 
proven to be 11 [20][21]. To achieve a further reduction in 
computational complexity, some operations of the DCT can be 
incorporated into the quantization step. These so-called scaled 
DCTs can result in significant improvements; for example, 
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Arai’s method needs only five multiplications and a very 
small number of additions, 29 to be exact [3]. 

All of the aforementioned fast algorithms still need floating 
point multiplications, so they are slow and complex in 
implementation. To achieve a faster computation, coefficients 
in many algorithms such as Arai’s method [3] can be scaled 
and approximated by integers such that floating-point 
multiplications can be replaced by integer multiplications 
[4][5]. The resulting algorithms are significantly faster than 
their original versions and, therefore, they have wide practical 
applications. 

The fixed-point multiplications required by these fast 
algorithms generally need a large width data bus (often 32 
bits), so a costly VLSI implementation in both hardware and 
power consumption. Therefore, the design of good 
approximations of the DCT to be implemented by a narrower 
bus width and simpler arithmetic operations (such as shift and 
addition) is very attractive [6]. 

In recent years, low-complexity methods for the efficient 
computation of the 8-point DCT can be found in the technical 
literature [22]. Approximation techniques include the signed 
DCT (SDCT) [23], the level 1 approximation by 
Lengwehasatit-Ortega [24], the Bouguezel-Ahmad-Swamy 
(BAS) series of algorithms [25–27], and the DCT round-off 
approximation [28]. However, not all approximation 
techniques found in the literature are beneficial when 
implementation is considered; for example, [24] requires 
additional steps prior to computing the DCT to determine the 
appropriate approximation. In general, the transformation 
matrix entries for approximate DCT methods are only {0, 
±1/2, ±1, ±2}; so a so-called null multiplicative complexity is 
possible because the involved operations can be implemented 
exclusively by means of additions and bit-shift operations 
[29]. 

These approximate DCT approaches rely on the SDCT for 
their derivation, as simply defined by applying the signum 
function operator to the DCT matrix coefficients, i.e. 

𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑗𝑗) =
1
√𝑁𝑁

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖, 𝑗𝑗)} 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑢𝑢} = �
+1, 𝑥𝑥 > 0
0, 𝑥𝑥 = 0
−1, 𝑥𝑥 < 0

 (4) 

Therefore, aside from the N1  term, the DCT matrix 
contains only positive/negative ones and zeros, so implying 
addition/subtraction or no operation.  

By setting some of the coefficients of TSDCT to zero, 
approximate DCTs are possible; so the 8x8 transform matrices 
C are obtained by a two-step process: (1) introduce few zeros 
and 1/2s in the 8x8 SDCT matrix to generate a modified 
transformation matrix 𝑇𝑇; (2) introduce a diagonal matrix D so 
that the resulting transformation matrix 𝐶𝐶 = 𝐷𝐷𝐷𝐷 is orthogonal, 
i.e. 𝐶𝐶−1 = 𝐶𝐶′ = 𝑇𝑇′𝐷𝐷. Therefore, only a transformation matrix 
and its transpose are needed to perform the DCT. The signed 
DCT [23] required two unique transformations (forward and 
inverse) as T is not orthogonal.  
Consider as an example one of the first approximate 
transformations given by BAS2008 [25];  

𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 1 2⁄ − 1 2⁄ −1 −1 −1 2⁄ 1 2⁄ 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
1 −1 0 0 0 0 1 −1

1 2⁄ −1 1 −1 2⁄ −1 2⁄ 1 −1 1 2⁄
0 0 0 −1 1 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
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As an example, let X be an 8x8 block matrix of an image 
and F its corresponding block matrix in the transform domain. 
Then, the forward and inverse transformation operations can 
be performed using the approximate transform as 𝐹𝐹 = 𝐶𝐶𝐶𝐶𝐶𝐶′ =
𝐷𝐷(𝑇𝑇𝑇𝑇𝑇𝑇′)𝐷𝐷   and 𝑋𝑋 = 𝐶𝐶′𝐹𝐹𝐹𝐹 = 𝑇𝑇′(𝐷𝐷𝐷𝐷𝐷𝐷)𝑇𝑇  respectively. The 
above approximate transform (as well as all other transforms 
found in the literature) is not multiplication free; however, it 
can be made so by merging the diagonal matrix D into the 
quantization/de-quantization matrix because the 
quantization/de-quantization is applied to the block matrix in 
the transform domain. In comparison with a conventional 
DCT transformation and given the exact transformation matrix 
T, 𝐹𝐹 = 𝑇𝑇𝑇𝑇𝑇𝑇′  and the reverse is 𝑋𝑋 = 𝑇𝑇′𝐹𝐹′𝑇𝑇 , where 𝐹𝐹′  is the 
decoded image portion. 

Table 1 illustrates the 8-point DCT computation complexity 
of the approximation DCT methods and a comparison with the 
original DFT, Cooley–Tukey DFT and the original DCT. 
Table 1: Approximate DCT methods applied to image compression; number 

of operations required to calculate the DCT for a 8x8 block size.   

 Method Additions Multiplications Shifts Total 
operations 

M
ul

tip
lie

rs
 

DFT by definition [1] 56a (432) 64b (192) 0 624 
DFT, Cooley–Tukey [1] 24a (58) 2b (6) 0 64 
DCT by definition [2] 56 64 0 120 
Arai algorithm [3] 29 5 0 34 

M
ul

tip
lie

r-
le

ss
 

SDCT [23] 24 0 0 24 
BAS08 [25]  18 0 2 20 
BAS09 [26]  18 0 0 18 
BAS11 [27] with a = 0 16 0 0 16 
BAS11 [27] with a = 1 18 0 0 18 
BAS11 [27] with a = 2 18 0 2 20 
CB11 [28]  22 0 0 22 
BC12 [29] 14 0 0 14 
PEA12 [16] 24 0 6 30 
PEA14 [17] 14 0 0 14 

a Complex additions. One complex addition represents two real additions [1]. 
The equivalent complexity in real additions is in parenthesis. 
b Complex multiplications. One complex multiplication represents three real 
multiplications and five real additions [1]. The equivalent complexity in real 
multiplications is in parenthesis. 

 
In addition to DCT matrix manipulation approximation, fast 

algorithms for the computation of the DCT such as using 
multiplier-free approximations [18] and pixel level behavioral 
decision [30] have been proposed. In general, these 
approximate methods rely on a trade-off between accuracy 
and low power. 
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III. INEXACT ADDITION AND APPROXIMATE DCT  
Arithmetic circuits are well suited to inexact computing; 

addition has been extensively analyzed in the technical 
literature and is one of the fundamental arithmetic operations 
in many applications of inexact computing [31]. A reduction 
in circuit complexity at transistor level of an adder circuit 
usually provides a good reduction in power dissipation, often 
higher than conventional low power design techniques [10]. 
Inexact adder designs have been evaluated in [12]: inexact 
operation has been introduced by either replacing the accurate 
cell of a modular adder design with an approximate cell of 
lower circuit complexity, or by modifying the generation and 
propagation of the carry in the addition process.  

In [14], three new inexact adder cell designs have been 
presented (denoted as InXA1, InXA2 and InXA3); these cells 
have both electrical and error features that are very favorable 
for approximate computing. These adder cells as shown in 
Table 2 have the following advantageous features over 
previous designs [10][13]: (i) a very small number of 
transistors; (ii) a very small number of erroneous outputs at 
the two outputs (i.e. Sum and Carry); (iii) smaller switching 
capacitances ( expressed in Cgn gate capacitance of minimum 
size NMOS), thus incurring in a substantial reduction in both 
delay and energy dissipation (Table 3) (and their product as 
combined metric).  

Table 2. Error features of different inexact adder cells  
Approach No. of 

transistors 
No. of erroneous 

values 
Error rate % Total node 

capacitance 
in Cgn Sum Carry Sum Carry 

AMA1, [10] 20 2 1 25 12.5 40 
AMA2, [10] 14 2 0 25 0 32 
AMA3, [10] 11 3 1 37.5 12.5 27 
AMA4, [10] 15 3 2 37.5 25 29 
AXA, [13] 7 2 0 25 0 14 
InXA1, [14] 6 0 2 0 25 20 
InXA2, [14] 8 2 0 25 0 14 
InXA3, [14] 6 2 0 25 0 12 

 
Metrics such as delay, energy dissipated and EDP (energy 

delay product) of the inexact cells for both average and worst 
cases are presented in Table 3. Among the inexact cells, 
InXA1 has the least average and worst case delays while 

InXA2 incurs in the least average and worst case power 
dissipations and least average EDP. The average and worst 
case delays and energy dissipation of the adder cells have been 
determined by exhaustive simulation. For each input signal, 
the delay is measured when the output reaches 90% of the 
maximum value while the energy dissipated is measured in all 
transistors during the time when the output reaches 90%. As 
per these advantages, InXA1 and InXA2 based adders are 
considered for the DCT application as treated next.   

Table 3. Electrical features of different inexact adder cells at 45nm PTM 
model [32] and using exhaustive inputs 

Approach Average 
delay (ps) 

Average 
energy 

dissipated (fJ) 

Average 
EDP 

(ps.fJ) 

Worst 
delay (ps) 

Worst energy 
dissipated  

(fJ) 

Worst 
EDP 

(ps.fJ) 
EFA, [33] 174.419 0.926751 161.643 424.647 2.366840 1005.07 
AMA1, [10] 16.539 0.513076 8.486 22.147 0.97947 21.69 
AMA2, [10] 25.314 0.663119 16.7863 27.64 0.72036 19.91 
AMA3, [10] 23.647 0.664915 15.7236 25.64 0.71163 18.25 
AMA4, [10] 17.647 0.478031 8.4361 26.64 0.62711 16.71 
AXA, [13] 30.841 0.404277 12.4684 35.64 0.892418 31.812 
InXA1, [14] 9.647 0.153591 1.4817 13.64 0.209684 2.861 
InXA2, [14] 16.814 0.056326 0.9470 43.14 0.129162 5.5730 
InXA3, [14] 59.8 0.340974 20.4043 80.64 0.421182 33.9673 
 

Table 4 summarizes the simulation results of implementing 
approximate DCT methods using InXA1 and InXA2 based 
adders, the two methods that resulted in the lowest EDPs [14], 
for different NAB values, where NAB is defined as follows. 
Definition: The Number of Approximate Bits (NAB) is 
defined as the number of bits starting from the LSB that utilize 
inexact cells.  

The data in this table are the results of using the different 
inexact addition approaches to calculate the DCT transform 
for one 8x8 image block-size. To obtain the figures of Table 4, 
the average case savings of a single adder cell with exhaustive 
inputs from Table 3 were used in conjunction with Table 1 to 
calculate the delay, energy dissipated and EDP results of all 
approximate DCT methods. Please note here that to simplify 
the calculations, the shift operations that are required by 
BAS08, BAS11(a=2) and PEA12 were not considered. Table 
3 also shows the results from implementing truncations using 
NAB values of 3, 4 and 5 bits. The adders used to obtain the 
results of Tables 3 all are of 16-bits sizes. 

Table 4. Average Metrics for Approximate DCT using InXA1, InXA2 and truncated addition compared with exact computation. 

Method 

NAB = 3 NAB = 4 NAB = 5 Exact 

Delay (ns) Energy (fJ) EDP 
(ns.fJ) x 103 Delay (ns) Energy (fJ) EDP 

(ns.fJ) x 103 Delay (ns) Energy (fJ) EDP 
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SDCT [23] 55.1 55.6 54.4 300 293 289 16.5 16.3 15.7 51.2 51.9 50.2 282 272 267 14.4 14.1 13.4 47.2 48.1 46.1 263 251 245 12.4 12.1 11.3 67.0 356 23.8 
BAS08 [25]  41.3 41.7 40.8 225 220 217 9.3 9.2 8.9 38.4 38.9 37.7 211 204 200 8.1 7.9 7.5 35.4 36.1 34.5 197 189 184 7.0 6.8 6.3 50.2 267 13.4 
BAS09 [26] 41.3 41.7 40.8 225 220 217 9.3 9.2 8.9 38.4 38.9 37.7 211 204 200 8.1 7.9 7.5 35.4 36.1 34.5 197 189 184 7.0 6.8 6.3 50.2 267 13.4 
BAS11 [27] a = 0 36.7 37.1 36.3 200 195 193 7.4 7.2 7.0 34.1 34.6 33.5 188 182 178 6.4 6.3 6.0 31.5 32.0 30.7 175 168 163 5.5 5.4 5.0 44.7 237 10.6 
BAS11 [27] a = 1 41.3 41.7 40.8 225 220 217 9.3 9.2 8.9 38.4 38.9 37.7 211 204 200 8.1 7.9 7.5 35.4 36.1 34.5 197 189 184 7.0 6.8 6.3 50.2 267 13.4 
BAS11 [27] a = 2 41.3 41.7 40.8 225 220 217 9.3 9.2 8.9 38.4 38.9 37.7 211 204 200 8.1 7.9 7.5 35.4 36.1 34.5 197 189 184 7.0 6.8 6.3 50.2 267 13.4 
CB11 [28]  50.5 51.0 49.9 275 269 265 13.9 13.7 13.2 46.9 47.5 46.1 258 250 245 12.1 11.9 11.3 43.3 44.1 42.2 241 230 224 10.4 10.2 9.5 61.4 326 20.0 
BC12 [29] 32.2 32.5 31.7 175 171 169 5.6 5.6 5.4 29.8 30.2 29.3 164 159 156 4.9 4.8 4.6 27.5 28.0 26.9 153 147 143 4.2 4.1 3.8 39.1 208 8.1 
PEA12 [16] 55.1 55.6 54.4 300 293 289 16.5 16.3 15.7 51.2 51.9 50.2 282 272 267 14.4 14.1 13.4 47.2 48.1 46.1 263 251 245 12.4 12.1 11.3 67.0 356 23.8 
PEA14 [17] 32.2 32.5 31.7 175 171 169 5.6 5.6 5.4 29.8 30.2 29.3 164 159 156 4.9 4.8 4.6 27.5 28.0 26.9 153 147 143 4.2 4.1 3.8 39.1 208 8.1 

 



0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2731770, IEEE
Transactions on Computers

5 
 

 The following conclusions can be drawn from the 
previously presented results.  
• The utilization of InXA2 results in a better EDP than 

InXA1. As shown in subsequent sections, truncation 
yields a lower EDP but  it incurs in low quality results 
when used for image compression 

• As the shift operations were not included in the 
comparison of the approximate DCT methods, it has been 
found that BC12 and PEA14 require the least amount 
time and energy to perform the 8x8 block DCT 
transformation. 

• The algorithm that has the most delay and dissipates the 
most energy for DCT is PEA12 and SDCT. 

IV. PROPOSED APPROXIMATE FRAMEWORK 
This paper presents a new image compression framework 

that consists of three levels of approximation as follows. 
• Level 1 is the multiplier-less DCT transformation, 
• Level 2 is the high frequency filtration,  
• Level 3 is the inexact computation. 

 Levels 1 and 3 were explained in previous sections. Although 
high frequency filtration (Level 2) is not a new concept, it is 
appropriate to describe it for sake of completeness because it 
contributes to the proposed framework for reducing its 
execution time and energy. 

Therefore, instead of performing the quantization process 
on all resulting DCT transformation coefficients, the process 
is only performed on the set of coefficients for the low 
frequency components of the transformed block. 

A. High frequency filtration   
Filtering the high frequencies generates an image that is 

hardly distinguished by the human eye (as only sensitive to 
low frequency contents).  

This feature can be used to compress an image. As outlined 
earlier, a DCT transforms the image in the frequency domain 
such that it is possible to ignore those coefficients that encode 
the high frequency components (so not sensitive to the human 
eye) while retain the other coefficients. 

Different numbers of retained coefficients are considered 
when applied to image compression applications; it has been 
demonstrated that just 0.34% – 24.26% out of 92112 DCT 
coefficients are sufficient in high speed face recognition 
applications [34][35]. Examples for 8x8 image blocks are as 
follows: 
• Image compression using a supporting vector machine in 

which only the first 8–16 coefficients are considered [36], 
• An image reconstruction method based on three 

coefficients only as proposed in [37],  
• Evaluation and assessment of various image compression 

methods employing only 10 coefficients as in [25][26]. 

B. Approximate DCT implementation 
Unlike the implementations of approximate DCT 

approaches found in Table 1, next all required calculations 
(addition and subtraction) are implemented at bit level using 
the corresponding logic functions. The length of all operators 

is given by 32-bits and implementations are simulated by 
MATLAB using their Boolean logical functions.  

Selected approximate DCT approaches are simulated for 
the Lena image; the results are plotted in Figure 1 in which the 
Power Signal to Noise Ratio (PSNR) of all methods is plotted 
against the number of Retained Coefficients (RC) used in the 
quantization stage of the compression.  

 

 
Figure 1 Compression of Lena using Approximate DCT and Bit-level Exact 

Computing. 

 
The PSNR is calculated from the Mean Square Error (MSE) 

as follows: 
• Mean Square Error (MSE):  

MSE = 1
𝑚𝑚×𝑛𝑛

∑ ∑ �𝑝𝑝𝑥𝑥,𝑦𝑦 − 𝑝̂𝑝𝑥𝑥,𝑦𝑦�
2𝑛𝑛

𝑦𝑦=1
𝑚𝑚
𝑥𝑥=1  (5) 

where 𝑝𝑝𝑗𝑗,𝑘𝑘 is the accurate pixel value at row x and column 
y of the image, 𝑝̂𝑝𝑥𝑥,𝑦𝑦 is the approximate value of the same 
pixel, m and n are the size of the image (rows and columns 
respectively). 

• Peak Signal to Noise Ratio (PSNR): 
 PSNR = 10 log (2𝑛𝑛−1)2

MSE
 (6) 

The results show that, except for the non-orthogonal SDCT 
method, compression using CB11 generally produces the best 
outcome in terms of PSNR. Three types of behavior are 
observed. 
• Increasing output quality with an increase of the number 

of retained coefficients (RC). This occurs for CB11, 
BAS08, BAS09, BAS11(a=0 and a=1), 

• An almost constant PSNR by increasing the RC. This 
occurs for BC12 and PEA14, 

• Degradation in output quality with an increase of RC. 
This occurs for both BAS11(a=2) and PEA12.  

Two additional measures are used for a better insight on the 
resulting quality, i.e. the Average Difference (AD) and the 
Maximum Absolute Difference (MD). These metrics are 
defined as 
• Average Difference (AD): 

 AD = 1
𝑚𝑚×𝑛𝑛

∑ ∑ �𝑝𝑝𝑥𝑥,𝑦𝑦 − 𝑝̂𝑝𝑥𝑥,𝑦𝑦�𝑛𝑛
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1  (7) 

• Maximum Absolute Difference (MD): 
 MD = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚,𝑛𝑛
��𝑝𝑝𝑥𝑥,𝑦𝑦 − 𝑝̂𝑝𝑥𝑥,𝑦𝑦��  (8) 
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Figures 2 and 3 show the resulting AD and MD for all 
methods; the average difference between the uncompressed 
and inexact-compressed images become smaller as RC 
increases except for BAS11(a=2) and PEA12 (further 
confirming the PSNR results in Figure 1). Figure 3 shows that 
the MD between the uncompressed and inexact-compressed 
image pixels is reduced as more retained coefficients are used, 
the exceptions are PEA12 and BAS11 (a=2). This further 
confirms the previous results.  

 
Figure 2 Average Difference (AD) for compression of Lena using 

Approximate DCT and Bit-level Exact Computing. (a) Full scaled results, and 
(b) Zoomed out results. 

 
Figure 3 Maximum Absolute Difference (MD)  for compression of Lena using 

Approximate DCT and Bit-level Exact Computing.  

Figure 4 depicts the compressed Lena image using the most 
accurate CB11 method for three RC values, i.e. 4, 10 and 16 
retained coefficients. This figure also shows for comparison 
purpose the exact DCT compression results with RC = 16. 

 

 
Figure 4 Compression of Lena using CB11 Approximate DCT method and 
Bit-level Exact Computing; (a) RC = 4, (b) RC = 10, (c) RC = 16, and (d) 

Exact DCT compression with RC = 16. 

C. Approximate DCT using inexact computing 
Consider next the approximate DCT compression of Lena 

using inexact adders; as previously, the value of the NAB is 
increased from 3 to 5. The PSNR results are shown in Figure 6 
versus RC; the PSNR of the compressed images (a measure of 
quality) is plotted by executing all approximate DCT methods 
using only one inexact adder (for example the top row uses 
AMA1 as the inexact adder). Each column plots the quality of 
the compressed images by executing all approximate DCT 
methods with only inexact adders (for a NAB value). For 
example the left most column are for NAB=3. As expected, 
the PSNR deteriorates as the NAB increases (an acceptable 
level of PSNR is reached at a NAB value of 4).  

D. Truncation 
Truncation is one of the possible inexact computing 

techniques that may be utilized; the results of using truncation 
are shown in Figure 5. The use of inexact adders results in 
more accurate results (truncation is performed at values of 3 
and 4 bits).  

 

 
Figure 5 Approximate DCT compression of Lena using Truncation; (a) 3 LSB 

bits truncation and (b) 4 LSB bits truncation. 

E. Images 
In previous sections, only Lena was utilized as benchmark 

image. In this section three other images are used to verify the 
validity of the results. Figures 7 and 8 show the results of 
compressing Cameraman, Boat and Peppers using NAB 
values of 3 and 4. The results show the same trends as for 
Lena, thus confirming the results previously presented. 
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Figure 6 Approximate DCT compression of Lena using inexact adders with different NAB values; (a) NAB=3, (b) NAB=4, and (c) NAB=5. 
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Figure 7 Approximate DCT compression of Lena, Cameraman, Boat and 

Peppers using Approximate Adders with NAB = 3.  
Horizontal axis = retained coefficients. Vertical axis = PSNR. 

 
Figure 8 Approximate DCT compression of Lena, Cameraman, Boat and 

Peppers using Approximate Adders with NAB = 4.  
Horizontal axis = retained coefficients. Vertical axis = PSNR. 

V. EVALUATION 
Next, a discussion will be presented with emphasis on 

inexact addition and approximate DCT methods for image 
compression. In such discussion, InXA2 inexact adders are 
used because it has been shown that they have the best 

performance amongst all inexact adders (shown in Section III 
and in [14]). Initially, the number of bits in an adder and the 
value of the NAB are considered; subsequently, image 
compression results are discussed and all approximate DCT 
methods using inexact additions are ranked. 

For a given n-bits inexact adder, higher the NAB value, 
lower are the delay and the energy required to perform an 
addition. This is illustrated in Table 5 in which the same ratio 
of n/NAB is considered (for different values of n). The 
reduction is given in percentage as  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  (𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  –  𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒  )/𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒  ∗  100% (9) 
where 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   is the variable (delay or energy) value for 

perform an n-bits addition using an inexact adder with a 
given NAB, and 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒  is the same variable value when 
executed on an exact adder.  

The value of 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is given by: 
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑁𝑁𝑁𝑁𝑁𝑁 +  (𝑛𝑛 − 𝑁𝑁𝑁𝑁𝑁𝑁) 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒   (10) 
where 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the average parameter (delay or energy) 

value of a single cell inexact adder while 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒  in the 
corresponding parameter value for the exact single cell adder. 

Table 5 includes as an example the reduction in delay 
under various n/NAB ratios and at different values of n.  

Table 5: Reduction in time and energy when using inexact adders.   

n/NAB ratio 4 2 1 
Reduction, (%) 24.85 49.70 99.40 
Delay example 
Delay (ns), n=4, 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = 11.17 𝑛𝑛𝑛𝑛 8.39 5.62 0.07 
Delay (ns), n=8, 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = 22.33 𝑛𝑛𝑛𝑛 16.78 11.23 0.13 
Delay (ns), n=16, 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = 44.67 𝑛𝑛𝑛𝑛 33.57 22.47 0.27 
Delay (ns), n=32, 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = 89.33 𝑛𝑛𝑛𝑛 67.13 44.94 0.54 

 
With InXA2 and a NAB value of 1, the addition results in 

no error and therefore the PSNR is not degraded, so the 
values of reduction in delay/energy are at the lowest (Table 6 
shows the reductions at NAB=1 for different values of n). 

Table 6: Reduction in delay time and energy when using inexact adders.   

n 4 8 16 32 
Reduction, (%) 24.85 12.42 6.21 3.11 
 
The execution time of an approximate DCT method is 

affected by the delay time of an addition and the number of 
additions in the method itself (as reported in Table 1).  

If the application of image compression using approximate 
DCTs is sought, then n should be considered very carefully. 
Since the depth of considered images is 8 bits, n should be 
chosen by considering both the largest number of additions 
required to perform any of the approximate DCT methods 
(i.e. 24 in Table 1) as well as the depth of the considered 
images (i.e. 8); so in the worst case, n should be 8+24, or 32 
bits. For image quality, previous sections have shown that a 
NAB value of 4 generates a reasonable balance between 
time/energy reductions and the resulting quality of the 
compressed image (as measured by the PSNR).  

Table 7 summarizes the results of using an InXA2 based 
inexact adder to compress 256x256 images for the 
approximate DCT JPEG compression methods discussed in 
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this work. The four images used in this manuscript are Lena, 
Cameraman, Boat and Peppers; again, the adder size is n=32 
and the NAB value is 4. 

The first column in Table 7 shows the ranking of the 
approximate methods with respect to the reductions of 
execution time/energy for the different approximate DCT 
methods; in this case, the reduction depends also on the 
number of additions a specific approximate DCT method 
requires to calculate the DCT matrix of an 8x8 size block. 
The next three columns show the average execution time 
reduction (which is related to the delay reduction as reported 
previously in Table 5 for the InXA2-based inexact adder), the 
average energy reduction (as per (9)) and the average PSNR 
(as averaged for the four considered images). The last 
column ranks the approximate DCT methods according to 
the generated quality of the compressed images (i.e. by the 
average PSNRs in the fourth column). 

Table 7 shows that on average the BC12 and PEA14 
methods require the least execution time and energy to 
compress an image compared to compressing an image using 
an exact adder. However, with regards to the quality of the 
picture, BC12 yields poor quality and it is ranked 9 (Table7). 
As for the best PSNR, the approximate DCT method CB11 
produces the highest value; however if both the rankings in 
the first and fifth columns are equally considered, then 
BAS09 is the best approximate method.  
Table 7: Ranking and average metrics (reductions in execution time/energy 

and PSNR) of approximate DCT methods for image compression.   

Method Reduction 
Rank 

Average 
Time 

reduction 
(%) 

Average 
Energy 

reduction 
(%) 

Average 
PSNR 

Quality 
Rank 

SDCT [23] 9 22.54 23.60 22.76 3 
BAS08 [25]  4 22.51 23.60 22.64 5 
BAS09 [26]  4 22.51 23.60 22.97 2 
BAS11 [27] a = 0 3 22.60 23.21 22.46 7 
BAS11 [27] a = 1 4 22.51 23.60 22.61 6 
BAS11 [27] a = 2 4 22.51 23.60 21.08 10 
CB11 [28]  8 22.64 23.31 23.93 1 
BC12 [29] 1 22.76 23.56 21.10 9 
PEA12 [16] 9 22.54 23.60 20.68 4 
PEA14 [17] 1 22.76 23.56 21.28 8 
 

As for the visual impact of errors, Figure 9 illustrates the 
compression of Lena using all considered approximate DCT 
methods with a RC value of 10 (as the recommended RC 
value by [17][25][26]) and a InXA2-based inexact adder; the 
approximate DCT method CB11 confirms the ranking in the 
fifth column of Table 7. The error analysis is provided in the 
supplemental material. 

VI. CONCLUSION 
This paper has presented a new approach for compressing 

images by approximate compression using the Discrete 
Cosine Transform (DCT) algorithm. The proposed approach 
consists of a 3-level framework by which initially a 
multiplier-less DCT transformation (so involving only 
additions and shift operations) is executed; this level is 

followed by a high frequency component (coefficient) 
filtering and computation using inexact adders. It has been 
shown that using 8x8 image blocks each level contributes to 
an approximation in the compression process, while still 
generating at the end a very high quality image. This 
manuscript has confirmed that the combined effects of these 
three levels are well understood; simulation and error 
analysis have shown a remarkable agreement in results for 
image compression as an application of inexact computing. 
 

 

Figure 9 Compression of Lena under considered approximate DCT methods 
and using an InXA2-based inexact adder with RC = 10; (a) SDCT [23], (b) 
BAS08 [25] , (c) BAS09 [26] , (d) BAS11 [27]a = 0, (e) BAS11 [27] a = 1, 

(f) BAS11 [27]a = 2, (g) CB11 [28] , (h) BC12 [29], (i) PEA12 [16], (j) 
PEA14 [17], (k) Exact DCT compression with RC=10, and  (l) Original 

uncompressed  image. 

As the proposed framework has been proved to be 
effective for a DCT method combining approximation at all 
three proposed levels, the following specific findings have 
been found and confirmed in this manuscript by simulation 
and error analysis. 
• Among all approximate DCT methods, CB11 produces 

the best quality compression (highest PSNR values) 
when using exact 16 bits adders (Figure 1). Other image 
manipulation quality measures (AD and MD) confirmed 
the PSNR results. (Figures 2 and 3). Methods BAS08, 
BAS11 with a=0 and BAS11 with a=1 are the next best 
methods. 

• Among all inexact adders discussed [14], it has been 
found that InXA2 performs the best. 

• When inexact adders are utilized to implement 
approximate DCT JPEG compression, non-truncation 
based methods produces better results than the 
corresponding truncation schemes, especially when 
considering higher NABs. (Figures 5 and 6).  

• The results for the DCT computed by using inexact 
adders are consistent when different images were used. 
(Figures 7 and 8). In general acceptable compression can 
be obtained with NAB values up to 4. Then it has been 

(a) (b) (c) (d)

(e) (f) (g) (h)
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shown that the quality of the results decreases 
substantially when larger NAB values are used. 

• On average using 4 image benchmarks, the BC12 and 
PEA14 methods take the least execution time and energy 
to compress an image compared to compressing an 
image using an exact adder. As for the best PSNR as 
metric of image quality, the approximate DCT method 
CB11 produces the highest value; however if both 
reductions in execution time and energy are considered, 
then BAS09 is the best approximate DCT method.  
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