
0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2731770, IEEE
Transactions on Computers

1

Approximate DCT Image Compression using Inexact Computing
Haider A.F.Almurib, Senior IEEE, T. Nandha Kumar, Senior IEEE, and Fabrizio Lombardi, Fellow IEEE

Abstract – This paper proposes a new framework for digital

image processing; it relies on inexact computing to address some
of the challenges associated with the discrete cosine transform
(DCT) compression. The proposed framework has three levels of
processing; the first level uses approximate DCT for image
compressing to eliminate all computational intensive floating-
point multiplications and executing the DCT processing by
integer additions and in some cases logical right/left shifts. The
second level further reduces the amount of data (from the first
level) that need to be processed by filtering those frequencies that
cannot be detected by human senses. Finally, to reduce power
consumption and delay, the third level introduces circuit level
inexact adders to compute the DCT. For assessment, a set of
standardized images are compressed using the proposed three-
level framework. Different figures of merits (such as energy
consumption, delay, power-signal-to-noise-ratio, average-
difference, and absolute-maximum-difference) are compared to
existing compression methods; an error analysis is also pursued
confirming the simulation results. Results show very good
improvements in reduction for energy and delay, while
maintaining acceptable accuracy levels for image processing
applications.

Keywords—Approximate Computing, DCT, Inexact Computing,
Image Compression,

I. INTRODUCTION1
Today’s computing system usually process a significant

amount of information that is computational and power
intensive. Digital Signal Processing (DSP) systems are widely
used to process image and video information, often under
mobile/wireless environments. These DSP systems use
image/video compression methods and algorithms. However,
the demands of power and performance remain very stringent.
Compression methods are often utilized to alleviate such
requirements. Image/video compression methods fall into two
general categories: lossless and lossy. The latter category is
more hardware efficient but at the expense of quality of the
final decompressed images/videos. For image processing, the
Joint Photographic Experts Group (JPEG) method is the
widely used lossy method while the Moving Picture Experts
Group (MPEG) method is the widely used lossy method for
video processing. Both standards use the Discrete Cosine
Transform (DCT) algorithm as basic processing step.

Many different fast algorithms for DCT [1][2] computation
have been developed for image and video applications;
however as all these algorithms still need floating point

Haider A.F.Almurib and T. Nandha Kumar are with the Faculty of

Engineering, The University of Nottingham, Malaysia (e-mail: haider.abbas;
nandhakumaar.t@nottingham.edu.my). Fabrizio Lombardi is with the
Department of ECE, Northeastern University, Boston, MA 02115, USA (e-
mail: lombardi@ece.neu.edu).

multiplications; they are computationally intensive requiring
extensive hardware resources. To address these concerns,
coefficients in many algorithms such as [3] can be scaled and
approximated by integers such that floating-point
multiplications can be replaced by integer multiplications
[4][5]. The resulting algorithms are significantly faster than
the original versions and, therefore, they are extensively used
in practical applications. Consequently, the design of good
approximations of the DCT for implementation by narrower
bus width and simpler arithmetic operations (such as shift and
addition) has received considerable attention over the last few
years [6].

An advantageous feature of image/video processing is its
highly error-tolerant nature; human senses cannot often
perceive degradation in performance, such as quality of visual
and audio information. Therefore, imprecise computation can
be used in many applications that tolerate some loss of
precision and some degree of uncertainty, [7][8], such as for
example image/video processing.

The introduction of inaccuracy at circuit level in the DCT
computation targets specific figures of merit (such as power
dissipation, delay and circuit complexity [9]-[14]) and it is
very challenging. This scheme targets low power and process
tolerance is based on a logic/gate/transistor level redesign of
an exact circuit. A logic synthesis approach [9] has been
proposed to design circuits for implementing an inexact
version of a given function by considering the so-called error
rate (ER) as metric for error tolerance. Reduction in circuit
complexity at transistor level of an adder circuit (such as by
truncating the circuits at the lowest bit positions) provides a
reduction in power dissipation higher than conventional low
power design techniques [10]; in addition to the ER, new
figures of merit for estimating the error in an inexact adder
have been presented in [11].

 [10] has presented an approximate mirror adder (AMA)
circuit that utilizes cell replacement by reducing adder cell
circuit complexity compared to a traditional mirror adder
(MA) scheme. Cell replacement usually provides a shorter
critical path; it also enables voltage scaling and reduces the
switching capacitance. [13] has proposed “approximate” adder
cells (AXA) based on XOR and XNOR implementations;
node capacitances and power are also reduced in the AXA
designs of [13].

As relevant to this manuscript, [14] has designed an adder
cell circuit with a lower number of transistors such that a
reduction in power dissipation is also accomplished. In [14],
three new inexact adder cell designs have been presented; they
are very favorable for approximate computing in terms of both
electrical and error features. Particularly they requires a
significantly reduced number of transistors, a small number of
erroneous outputs and incur in a substantial reduction in both

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2731770, IEEE
Transactions on Computers

2

delay and energy dissipation. There is an extensive literature
on inexact/approximate computing and related hardware
design [9]-[15]; however in these papers, the degree of
inexactness/approximation is usually restricted to arithmetic
functions and/or the final objective(s) is reducing specific
figures of merit (such as power/energy consumption, error and
delay) mostly at circuit-level. This type of analysis assumes a
flat view of operation because it does not take account that
many domains of approximation are possible once a specific
application (and related algorithms) is considered. This
manuscript considers DCT (as one of the most commonly
used processing algorithms in DSP) by expanding the domains
of approximation into a more comprehensive framework.
Therefore, this paper presents a new framework for
approximate DCT image compression; this framework is
based on inexact computing and consists of three levels.
• Level 1 consists of a multiplier-less DCT transformation,

so involving only additions;
• Level 2 consists of high frequency component

(coefficient) filtering;
• Level 3 consists of computation using inexact adders.
Level 1 has been widely studied in the technical literature

[16][17][18]; Level 2 is an intuitive technique to reduce the
complexity of computation while attaining only a marginal
degradation in image compression. Level 3 follows a circuit-
level technique by which inexact computation is pursued
(albeit new and efficient inexact adder cells are utilized in this
manuscript). Therefore, the contribution of this manuscript is
found in the combined effects of these three levels. The
proposed framework has been extensively analyzed and
evaluated. Simulation and error analysis show a remarkable
agreement in results for image compression as an application
of inexact computing.

Hereafter to avoid confusion the word “approximate” is
used only for the DCT algorithms while the word “inexact” is
used for circuits and design involving non-exact hardware for
computing the DCT.

This paper is organized as follows: Section II presents the
review of DCT, while approximate DCT implementation
using inexact adders are dealt with in Section III. The
proposed framework is presented in Section IV, and its
evaluation in Section V. Finally, the conclusion is provided in
Section VI.

II. REVIEW OF DCT
For manuscript completeness, preliminaries to approximate
DCT and a review of relevant topics are presented next.

A. Discrete Cosine Transform (DCT)
To obtain the ith and jth DCT transformed elements of an

image block (represented by a matrix p of size N), the
following equation is used:

𝐷𝐷(𝑖𝑖, 𝑗𝑗) =
1

√2𝑁𝑁
𝐶𝐶(𝑖𝑖)𝐶𝐶(𝑗𝑗)��𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑐𝑐𝑐𝑐𝑐𝑐 �

𝜋𝜋(2𝑥𝑥 + 1)𝑖𝑖
2𝑁𝑁 � 𝑐𝑐𝑐𝑐𝑐𝑐 �

𝜋𝜋(2𝑦𝑦 + 1)𝑗𝑗
2𝑁𝑁 �

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=0

𝐶𝐶(𝑢𝑢) = �1 √2⁄ , 𝑢𝑢 = 0
1, 𝑢𝑢 > 0

 (1)

where p(x, y) is the x,yth element of the image. This equation
calculates one entry (i,jth) of the transformed image from the
pixel values of the original image matrix. For the commonly
used 8x8 block for JPEG compression, N is equal to 8 and x
and y range from 0 to 7. Therefore D(i,j) is also given by the
following equation:
𝐷𝐷(𝑖𝑖, 𝑗𝑗) = 1

4
𝐶𝐶(𝑖𝑖)𝐶𝐶(𝑗𝑗)∑ ∑ 𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑐𝑐𝑐𝑐𝑐𝑐 �𝜋𝜋(2𝑥𝑥+1)𝑖𝑖

16
� 𝑐𝑐𝑐𝑐𝑐𝑐 �𝜋𝜋(2𝑦𝑦+1)𝑗𝑗

16
�7

𝑗𝑗=0
7
𝑖𝑖=0 (2)

For matrix calculations, the DCT matrix is obtained from

the following equation:

𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖, 𝑗𝑗) = �
1 √𝑁𝑁⁄ , 𝑖𝑖 = 0

�2
𝑁𝑁
𝑐𝑐𝑐𝑐𝑐𝑐 �𝜋𝜋(2𝑗𝑗+1)𝑖𝑖

2𝑁𝑁
� , 𝑖𝑖 > 0

 (3)

So, DCT is computation intensive and may require floating-
point operations for processing, unless an approximate
algorithm is utilized.

B. Joint Photographic Experts Group (JPEG)
The JPEG processing is first initiated by transforming an

image to the frequency domain using the DCT; this separates
images into parts of differing frequencies. Then, the
quantization is performed such that frequencies of lesser
importance are discarded. This reflects the capability of
humans to be reasonably good at seeing small differences in
brightness over a relatively large area, but they usually cannot
distinguish the exact strength of a rapidly varying brightness
variation. The compression takes place during this
quantization step in which each component in the frequency
domain is divided by a constant, and then rounded to the
nearest integer. This results in many high frequency
components having very small or likely zero values, small
values at best. The image is then retrieved during the
decompression process that is performed using only the
important frequencies that have been retained.

For JPEG processing, the following steps must be executed:
1. An image (in color or grey scales) is first subdivided into

blocks of kxk pixels (usually k=8).
2. Then from left to right and top to bottom, the DCT is

applied to each block.
3. This generates kxk coefficients (so 64 for k=8) that are

then quantized to reduce the magnitudes.
4. The resulting array of compressed blocks represents the

compressed image, i.e. the stored or transmitted image.
5. To retrieve the image, the compressed image (array of

blocks) is decompressed using Inverse DCT (IDCT).

Many different fast algorithms for DCT [1][2] computation

have been developed for image and video applications. The
method proposed by Loeffler et al. [19] requires 11
multiplications and 29 additions and it is regarded the most
efficient because the theoretical lower bound on the number of
multiplications required for the 1-D eight-point DCT has been
proven to be 11 [20][21]. To achieve a further reduction in
computational complexity, some operations of the DCT can be
incorporated into the quantization step. These so-called scaled
DCTs can result in significant improvements; for example,

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2731770, IEEE
Transactions on Computers

3

Arai’s method needs only five multiplications and a very
small number of additions, 29 to be exact [3].

All of the aforementioned fast algorithms still need floating
point multiplications, so they are slow and complex in
implementation. To achieve a faster computation, coefficients
in many algorithms such as Arai’s method [3] can be scaled
and approximated by integers such that floating-point
multiplications can be replaced by integer multiplications
[4][5]. The resulting algorithms are significantly faster than
their original versions and, therefore, they have wide practical
applications.

The fixed-point multiplications required by these fast
algorithms generally need a large width data bus (often 32
bits), so a costly VLSI implementation in both hardware and
power consumption. Therefore, the design of good
approximations of the DCT to be implemented by a narrower
bus width and simpler arithmetic operations (such as shift and
addition) is very attractive [6].

In recent years, low-complexity methods for the efficient
computation of the 8-point DCT can be found in the technical
literature [22]. Approximation techniques include the signed
DCT (SDCT) [23], the level 1 approximation by
Lengwehasatit-Ortega [24], the Bouguezel-Ahmad-Swamy
(BAS) series of algorithms [25–27], and the DCT round-off
approximation [28]. However, not all approximation
techniques found in the literature are beneficial when
implementation is considered; for example, [24] requires
additional steps prior to computing the DCT to determine the
appropriate approximation. In general, the transformation
matrix entries for approximate DCT methods are only {0,
±1/2, ±1, ±2}; so a so-called null multiplicative complexity is
possible because the involved operations can be implemented
exclusively by means of additions and bit-shift operations
[29].

These approximate DCT approaches rely on the SDCT for
their derivation, as simply defined by applying the signum
function operator to the DCT matrix coefficients, i.e.

𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑗𝑗) =
1
√𝑁𝑁

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖, 𝑗𝑗)}

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑢𝑢} = �
+1, 𝑥𝑥 > 0
0, 𝑥𝑥 = 0
−1, 𝑥𝑥 < 0

 (4)

Therefore, aside from the N1 term, the DCT matrix
contains only positive/negative ones and zeros, so implying
addition/subtraction or no operation.

By setting some of the coefficients of TSDCT to zero,
approximate DCTs are possible; so the 8x8 transform matrices
C are obtained by a two-step process: (1) introduce few zeros
and 1/2s in the 8x8 SDCT matrix to generate a modified
transformation matrix 𝑇𝑇; (2) introduce a diagonal matrix D so
that the resulting transformation matrix 𝐶𝐶 = 𝐷𝐷𝐷𝐷 is orthogonal,
i.e. 𝐶𝐶−1 = 𝐶𝐶′ = 𝑇𝑇′𝐷𝐷. Therefore, only a transformation matrix
and its transpose are needed to perform the DCT. The signed
DCT [23] required two unique transformations (forward and
inverse) as T is not orthogonal.
Consider as an example one of the first approximate
transformations given by BAS2008 [25];

𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 1 2⁄ − 1 2⁄ −1 −1 −1 2⁄ 1 2⁄ 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
1 −1 0 0 0 0 1 −1

1 2⁄ −1 1 −1 2⁄ −1 2⁄ 1 −1 1 2⁄
0 0 0 −1 1 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

and 𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 � 1
2√2

, 1
2

, 1
√5

, 1
√2

, 1
2√2

, 1
2

, 1
√5

, 1
√2
�.

As an example, let X be an 8x8 block matrix of an image
and F its corresponding block matrix in the transform domain.
Then, the forward and inverse transformation operations can
be performed using the approximate transform as 𝐹𝐹 = 𝐶𝐶𝐶𝐶𝐶𝐶′ =
𝐷𝐷(𝑇𝑇𝑇𝑇𝑇𝑇′)𝐷𝐷 and 𝑋𝑋 = 𝐶𝐶′𝐹𝐹𝐹𝐹 = 𝑇𝑇′(𝐷𝐷𝐷𝐷𝐷𝐷)𝑇𝑇 respectively. The
above approximate transform (as well as all other transforms
found in the literature) is not multiplication free; however, it
can be made so by merging the diagonal matrix D into the
quantization/de-quantization matrix because the
quantization/de-quantization is applied to the block matrix in
the transform domain. In comparison with a conventional
DCT transformation and given the exact transformation matrix
T, 𝐹𝐹 = 𝑇𝑇𝑇𝑇𝑇𝑇′ and the reverse is 𝑋𝑋 = 𝑇𝑇′𝐹𝐹′𝑇𝑇 , where 𝐹𝐹′ is the
decoded image portion.

Table 1 illustrates the 8-point DCT computation complexity
of the approximation DCT methods and a comparison with the
original DFT, Cooley–Tukey DFT and the original DCT.
Table 1: Approximate DCT methods applied to image compression; number

of operations required to calculate the DCT for a 8x8 block size.

 Method Additions Multiplications Shifts Total
operations

M
ul

tip
lie

rs

DFT by definition [1] 56a (432) 64b (192) 0 624
DFT, Cooley–Tukey [1] 24a (58) 2b (6) 0 64
DCT by definition [2] 56 64 0 120
Arai algorithm [3] 29 5 0 34

M
ul

tip
lie

r-
le

ss

SDCT [23] 24 0 0 24
BAS08 [25] 18 0 2 20
BAS09 [26] 18 0 0 18
BAS11 [27] with a = 0 16 0 0 16
BAS11 [27] with a = 1 18 0 0 18
BAS11 [27] with a = 2 18 0 2 20
CB11 [28] 22 0 0 22
BC12 [29] 14 0 0 14
PEA12 [16] 24 0 6 30
PEA14 [17] 14 0 0 14

a Complex additions. One complex addition represents two real additions [1].
The equivalent complexity in real additions is in parenthesis.
b Complex multiplications. One complex multiplication represents three real
multiplications and five real additions [1]. The equivalent complexity in real
multiplications is in parenthesis.

In addition to DCT matrix manipulation approximation, fast

algorithms for the computation of the DCT such as using
multiplier-free approximations [18] and pixel level behavioral
decision [30] have been proposed. In general, these
approximate methods rely on a trade-off between accuracy
and low power.

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2731770, IEEE
Transactions on Computers

4

III. INEXACT ADDITION AND APPROXIMATE DCT
Arithmetic circuits are well suited to inexact computing;

addition has been extensively analyzed in the technical
literature and is one of the fundamental arithmetic operations
in many applications of inexact computing [31]. A reduction
in circuit complexity at transistor level of an adder circuit
usually provides a good reduction in power dissipation, often
higher than conventional low power design techniques [10].
Inexact adder designs have been evaluated in [12]: inexact
operation has been introduced by either replacing the accurate
cell of a modular adder design with an approximate cell of
lower circuit complexity, or by modifying the generation and
propagation of the carry in the addition process.

In [14], three new inexact adder cell designs have been
presented (denoted as InXA1, InXA2 and InXA3); these cells
have both electrical and error features that are very favorable
for approximate computing. These adder cells as shown in
Table 2 have the following advantageous features over
previous designs [10][13]: (i) a very small number of
transistors; (ii) a very small number of erroneous outputs at
the two outputs (i.e. Sum and Carry); (iii) smaller switching
capacitances (expressed in Cgn gate capacitance of minimum
size NMOS), thus incurring in a substantial reduction in both
delay and energy dissipation (Table 3) (and their product as
combined metric).

Table 2. Error features of different inexact adder cells
Approach No. of

transistors
No. of erroneous

values
Error rate % Total node

capacitance
in Cgn Sum Carry Sum Carry

AMA1, [10] 20 2 1 25 12.5 40
AMA2, [10] 14 2 0 25 0 32
AMA3, [10] 11 3 1 37.5 12.5 27
AMA4, [10] 15 3 2 37.5 25 29
AXA, [13] 7 2 0 25 0 14
InXA1, [14] 6 0 2 0 25 20
InXA2, [14] 8 2 0 25 0 14
InXA3, [14] 6 2 0 25 0 12

Metrics such as delay, energy dissipated and EDP (energy

delay product) of the inexact cells for both average and worst
cases are presented in Table 3. Among the inexact cells,
InXA1 has the least average and worst case delays while

InXA2 incurs in the least average and worst case power
dissipations and least average EDP. The average and worst
case delays and energy dissipation of the adder cells have been
determined by exhaustive simulation. For each input signal,
the delay is measured when the output reaches 90% of the
maximum value while the energy dissipated is measured in all
transistors during the time when the output reaches 90%. As
per these advantages, InXA1 and InXA2 based adders are
considered for the DCT application as treated next.

Table 3. Electrical features of different inexact adder cells at 45nm PTM
model [32] and using exhaustive inputs

Approach Average
delay (ps)

Average
energy

dissipated (fJ)

Average
EDP

(ps.fJ)

Worst
delay (ps)

Worst energy
dissipated

(fJ)

Worst
EDP

(ps.fJ)
EFA, [33] 174.419 0.926751 161.643 424.647 2.366840 1005.07
AMA1, [10] 16.539 0.513076 8.486 22.147 0.97947 21.69
AMA2, [10] 25.314 0.663119 16.7863 27.64 0.72036 19.91
AMA3, [10] 23.647 0.664915 15.7236 25.64 0.71163 18.25
AMA4, [10] 17.647 0.478031 8.4361 26.64 0.62711 16.71
AXA, [13] 30.841 0.404277 12.4684 35.64 0.892418 31.812
InXA1, [14] 9.647 0.153591 1.4817 13.64 0.209684 2.861
InXA2, [14] 16.814 0.056326 0.9470 43.14 0.129162 5.5730
InXA3, [14] 59.8 0.340974 20.4043 80.64 0.421182 33.9673

Table 4 summarizes the simulation results of implementing
approximate DCT methods using InXA1 and InXA2 based
adders, the two methods that resulted in the lowest EDPs [14],
for different NAB values, where NAB is defined as follows.
Definition: The Number of Approximate Bits (NAB) is
defined as the number of bits starting from the LSB that utilize
inexact cells.

The data in this table are the results of using the different
inexact addition approaches to calculate the DCT transform
for one 8x8 image block-size. To obtain the figures of Table 4,
the average case savings of a single adder cell with exhaustive
inputs from Table 3 were used in conjunction with Table 1 to
calculate the delay, energy dissipated and EDP results of all
approximate DCT methods. Please note here that to simplify
the calculations, the shift operations that are required by
BAS08, BAS11(a=2) and PEA12 were not considered. Table
3 also shows the results from implementing truncations using
NAB values of 3, 4 and 5 bits. The adders used to obtain the
results of Tables 3 all are of 16-bits sizes.

Table 4. Average Metrics for Approximate DCT using InXA1, InXA2 and truncated addition compared with exact computation.

Method

NAB = 3 NAB = 4 NAB = 5 Exact

Delay (ns) Energy (fJ) EDP
(ns.fJ) x 103 Delay (ns) Energy (fJ) EDP

(ns.fJ) x 103 Delay (ns) Energy (fJ) EDP
(ns.fJ) x 103

D
el

ay
 (n

s)

E
ne

rg
y

(fJ
)

E
D

P
(n

s.f
J)

 x
 1

03

In
X

A
1

In
X

A
2

T
ru

nc

In
X

A
1

In
X

A
2

T
ru

nc

In
X

A
1

In
X

A
2

T
ru

nc

In
X

A
1

In
X

A
2

T
ru

nc

In
X

A
1

In
X

A
2

T
ru

nc

In
X

A
1

In
X

A
2

T
ru

nc

In
X

A
1

In
X

A
2

T
ru

nc

In
X

A
1

In
X

A
2

T
ru

nc

In
X

A
1

In
X

A
2

T
ru

nc

SDCT [23] 55.1 55.6 54.4 300 293 289 16.5 16.3 15.7 51.2 51.9 50.2 282 272 267 14.4 14.1 13.4 47.2 48.1 46.1 263 251 245 12.4 12.1 11.3 67.0 356 23.8
BAS08 [25] 41.3 41.7 40.8 225 220 217 9.3 9.2 8.9 38.4 38.9 37.7 211 204 200 8.1 7.9 7.5 35.4 36.1 34.5 197 189 184 7.0 6.8 6.3 50.2 267 13.4
BAS09 [26] 41.3 41.7 40.8 225 220 217 9.3 9.2 8.9 38.4 38.9 37.7 211 204 200 8.1 7.9 7.5 35.4 36.1 34.5 197 189 184 7.0 6.8 6.3 50.2 267 13.4
BAS11 [27] a = 0 36.7 37.1 36.3 200 195 193 7.4 7.2 7.0 34.1 34.6 33.5 188 182 178 6.4 6.3 6.0 31.5 32.0 30.7 175 168 163 5.5 5.4 5.0 44.7 237 10.6
BAS11 [27] a = 1 41.3 41.7 40.8 225 220 217 9.3 9.2 8.9 38.4 38.9 37.7 211 204 200 8.1 7.9 7.5 35.4 36.1 34.5 197 189 184 7.0 6.8 6.3 50.2 267 13.4
BAS11 [27] a = 2 41.3 41.7 40.8 225 220 217 9.3 9.2 8.9 38.4 38.9 37.7 211 204 200 8.1 7.9 7.5 35.4 36.1 34.5 197 189 184 7.0 6.8 6.3 50.2 267 13.4
CB11 [28] 50.5 51.0 49.9 275 269 265 13.9 13.7 13.2 46.9 47.5 46.1 258 250 245 12.1 11.9 11.3 43.3 44.1 42.2 241 230 224 10.4 10.2 9.5 61.4 326 20.0
BC12 [29] 32.2 32.5 31.7 175 171 169 5.6 5.6 5.4 29.8 30.2 29.3 164 159 156 4.9 4.8 4.6 27.5 28.0 26.9 153 147 143 4.2 4.1 3.8 39.1 208 8.1
PEA12 [16] 55.1 55.6 54.4 300 293 289 16.5 16.3 15.7 51.2 51.9 50.2 282 272 267 14.4 14.1 13.4 47.2 48.1 46.1 263 251 245 12.4 12.1 11.3 67.0 356 23.8
PEA14 [17] 32.2 32.5 31.7 175 171 169 5.6 5.6 5.4 29.8 30.2 29.3 164 159 156 4.9 4.8 4.6 27.5 28.0 26.9 153 147 143 4.2 4.1 3.8 39.1 208 8.1

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2731770, IEEE
Transactions on Computers

5

 The following conclusions can be drawn from the
previously presented results.
• The utilization of InXA2 results in a better EDP than

InXA1. As shown in subsequent sections, truncation
yields a lower EDP but it incurs in low quality results
when used for image compression

• As the shift operations were not included in the
comparison of the approximate DCT methods, it has been
found that BC12 and PEA14 require the least amount
time and energy to perform the 8x8 block DCT
transformation.

• The algorithm that has the most delay and dissipates the
most energy for DCT is PEA12 and SDCT.

IV. PROPOSED APPROXIMATE FRAMEWORK
This paper presents a new image compression framework

that consists of three levels of approximation as follows.
• Level 1 is the multiplier-less DCT transformation,
• Level 2 is the high frequency filtration,
• Level 3 is the inexact computation.

 Levels 1 and 3 were explained in previous sections. Although
high frequency filtration (Level 2) is not a new concept, it is
appropriate to describe it for sake of completeness because it
contributes to the proposed framework for reducing its
execution time and energy.

Therefore, instead of performing the quantization process
on all resulting DCT transformation coefficients, the process
is only performed on the set of coefficients for the low
frequency components of the transformed block.

A. High frequency filtration
Filtering the high frequencies generates an image that is

hardly distinguished by the human eye (as only sensitive to
low frequency contents).

This feature can be used to compress an image. As outlined
earlier, a DCT transforms the image in the frequency domain
such that it is possible to ignore those coefficients that encode
the high frequency components (so not sensitive to the human
eye) while retain the other coefficients.

Different numbers of retained coefficients are considered
when applied to image compression applications; it has been
demonstrated that just 0.34% – 24.26% out of 92112 DCT
coefficients are sufficient in high speed face recognition
applications [34][35]. Examples for 8x8 image blocks are as
follows:
• Image compression using a supporting vector machine in

which only the first 8–16 coefficients are considered [36],
• An image reconstruction method based on three

coefficients only as proposed in [37],
• Evaluation and assessment of various image compression

methods employing only 10 coefficients as in [25][26].

B. Approximate DCT implementation
Unlike the implementations of approximate DCT

approaches found in Table 1, next all required calculations
(addition and subtraction) are implemented at bit level using
the corresponding logic functions. The length of all operators

is given by 32-bits and implementations are simulated by
MATLAB using their Boolean logical functions.

Selected approximate DCT approaches are simulated for
the Lena image; the results are plotted in Figure 1 in which the
Power Signal to Noise Ratio (PSNR) of all methods is plotted
against the number of Retained Coefficients (RC) used in the
quantization stage of the compression.

Figure 1 Compression of Lena using Approximate DCT and Bit-level Exact

Computing.

The PSNR is calculated from the Mean Square Error (MSE)

as follows:
• Mean Square Error (MSE):

MSE = 1
𝑚𝑚×𝑛𝑛

∑ ∑ �𝑝𝑝𝑥𝑥,𝑦𝑦 − 𝑝̂𝑝𝑥𝑥,𝑦𝑦�
2𝑛𝑛

𝑦𝑦=1
𝑚𝑚
𝑥𝑥=1 (5)

where 𝑝𝑝𝑗𝑗,𝑘𝑘 is the accurate pixel value at row x and column
y of the image, 𝑝̂𝑝𝑥𝑥,𝑦𝑦 is the approximate value of the same
pixel, m and n are the size of the image (rows and columns
respectively).

• Peak Signal to Noise Ratio (PSNR):
 PSNR = 10 log (2𝑛𝑛−1)2

MSE
 (6)

The results show that, except for the non-orthogonal SDCT
method, compression using CB11 generally produces the best
outcome in terms of PSNR. Three types of behavior are
observed.
• Increasing output quality with an increase of the number

of retained coefficients (RC). This occurs for CB11,
BAS08, BAS09, BAS11(a=0 and a=1),

• An almost constant PSNR by increasing the RC. This
occurs for BC12 and PEA14,

• Degradation in output quality with an increase of RC.
This occurs for both BAS11(a=2) and PEA12.

Two additional measures are used for a better insight on the
resulting quality, i.e. the Average Difference (AD) and the
Maximum Absolute Difference (MD). These metrics are
defined as
• Average Difference (AD):

 AD = 1
𝑚𝑚×𝑛𝑛

∑ ∑ �𝑝𝑝𝑥𝑥,𝑦𝑦 − 𝑝̂𝑝𝑥𝑥,𝑦𝑦�𝑛𝑛
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1 (7)

• Maximum Absolute Difference (MD):
 MD = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚,𝑛𝑛
��𝑝𝑝𝑥𝑥,𝑦𝑦 − 𝑝̂𝑝𝑥𝑥,𝑦𝑦�� (8)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
20

21

22

23

24

25

26

27

28

29

30

31

Number of retained coefficients

PS
N

R

SDCT BAS08 BAS09 BAS11,a=0 BAS11,a=1 BAS11,a=2 CB11 BC12 PEA12 PEA14

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2731770, IEEE
Transactions on Computers

6

Figures 2 and 3 show the resulting AD and MD for all
methods; the average difference between the uncompressed
and inexact-compressed images become smaller as RC
increases except for BAS11(a=2) and PEA12 (further
confirming the PSNR results in Figure 1). Figure 3 shows that
the MD between the uncompressed and inexact-compressed
image pixels is reduced as more retained coefficients are used,
the exceptions are PEA12 and BAS11 (a=2). This further
confirms the previous results.

Figure 2 Average Difference (AD) for compression of Lena using

Approximate DCT and Bit-level Exact Computing. (a) Full scaled results, and
(b) Zoomed out results.

Figure 3 Maximum Absolute Difference (MD) for compression of Lena using

Approximate DCT and Bit-level Exact Computing.

Figure 4 depicts the compressed Lena image using the most
accurate CB11 method for three RC values, i.e. 4, 10 and 16
retained coefficients. This figure also shows for comparison
purpose the exact DCT compression results with RC = 16.

Figure 4 Compression of Lena using CB11 Approximate DCT method and
Bit-level Exact Computing; (a) RC = 4, (b) RC = 10, (c) RC = 16, and (d)

Exact DCT compression with RC = 16.

C. Approximate DCT using inexact computing
Consider next the approximate DCT compression of Lena

using inexact adders; as previously, the value of the NAB is
increased from 3 to 5. The PSNR results are shown in Figure 6
versus RC; the PSNR of the compressed images (a measure of
quality) is plotted by executing all approximate DCT methods
using only one inexact adder (for example the top row uses
AMA1 as the inexact adder). Each column plots the quality of
the compressed images by executing all approximate DCT
methods with only inexact adders (for a NAB value). For
example the left most column are for NAB=3. As expected,
the PSNR deteriorates as the NAB increases (an acceptable
level of PSNR is reached at a NAB value of 4).

D. Truncation
Truncation is one of the possible inexact computing

techniques that may be utilized; the results of using truncation
are shown in Figure 5. The use of inexact adders results in
more accurate results (truncation is performed at values of 3
and 4 bits).

Figure 5 Approximate DCT compression of Lena using Truncation; (a) 3 LSB

bits truncation and (b) 4 LSB bits truncation.

E. Images
In previous sections, only Lena was utilized as benchmark

image. In this section three other images are used to verify the
validity of the results. Figures 7 and 8 show the results of
compressing Cameraman, Boat and Peppers using NAB
values of 3 and 4. The results show the same trends as for
Lena, thus confirming the results previously presented.

-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05

A
ve

ra
ge

 D
iff

er
en

ce

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
-0.01

0.00

0.01

Number of retained coefficients

SDCT BAS08 BAS09 BAS11,a=0 BAS11,a=1 BAS11,a=2 CB11 BC12 PEA12 PEA14

(b)

(a)

(a) (b) (c) (d)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
18

19

20

21

22

23

24

25

Number of remaining coefficients

PS
N

R

(b)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
20

21

22

23

24

25

26

27

PS
N

R

(a)

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2731770, IEEE
Transactions on Computers

7

Figure 6 Approximate DCT compression of Lena using inexact adders with different NAB values; (a) NAB=3, (b) NAB=4, and (c) NAB=5.

25

SDCT BAS08 BAS09 BAS11,a=0 BAS11,a=1 BAS11,a=2 CB11 BC12 PEA12 PEA14

InXA3 InXA3

InXA3

 (c) NAB = 5

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2731770, IEEE
Transactions on Computers

8

Figure 7 Approximate DCT compression of Lena, Cameraman, Boat and

Peppers using Approximate Adders with NAB = 3.
Horizontal axis = retained coefficients. Vertical axis = PSNR.

Figure 8 Approximate DCT compression of Lena, Cameraman, Boat and

Peppers using Approximate Adders with NAB = 4.
Horizontal axis = retained coefficients. Vertical axis = PSNR.

V. EVALUATION
Next, a discussion will be presented with emphasis on

inexact addition and approximate DCT methods for image
compression. In such discussion, InXA2 inexact adders are
used because it has been shown that they have the best

performance amongst all inexact adders (shown in Section III
and in [14]). Initially, the number of bits in an adder and the
value of the NAB are considered; subsequently, image
compression results are discussed and all approximate DCT
methods using inexact additions are ranked.

For a given n-bits inexact adder, higher the NAB value,
lower are the delay and the energy required to perform an
addition. This is illustrated in Table 5 in which the same ratio
of n/NAB is considered (for different values of n). The
reduction is given in percentage as
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = (𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒)/𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 100% (9)
where 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the variable (delay or energy) value for

perform an n-bits addition using an inexact adder with a
given NAB, and 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 is the same variable value when
executed on an exact adder.

The value of 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is given by:
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁𝑁𝑁 + (𝑛𝑛 − 𝑁𝑁𝑁𝑁𝑁𝑁) 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 (10)
where 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the average parameter (delay or energy)

value of a single cell inexact adder while 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 in the
corresponding parameter value for the exact single cell adder.

Table 5 includes as an example the reduction in delay
under various n/NAB ratios and at different values of n.

Table 5: Reduction in time and energy when using inexact adders.

n/NAB ratio 4 2 1
Reduction, (%) 24.85 49.70 99.40
Delay example
Delay (ns), n=4, 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = 11.17 𝑛𝑛𝑛𝑛 8.39 5.62 0.07
Delay (ns), n=8, 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = 22.33 𝑛𝑛𝑛𝑛 16.78 11.23 0.13
Delay (ns), n=16, 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = 44.67 𝑛𝑛𝑛𝑛 33.57 22.47 0.27
Delay (ns), n=32, 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = 89.33 𝑛𝑛𝑛𝑛 67.13 44.94 0.54

With InXA2 and a NAB value of 1, the addition results in

no error and therefore the PSNR is not degraded, so the
values of reduction in delay/energy are at the lowest (Table 6
shows the reductions at NAB=1 for different values of n).

Table 6: Reduction in delay time and energy when using inexact adders.

n 4 8 16 32
Reduction, (%) 24.85 12.42 6.21 3.11

The execution time of an approximate DCT method is

affected by the delay time of an addition and the number of
additions in the method itself (as reported in Table 1).

If the application of image compression using approximate
DCTs is sought, then n should be considered very carefully.
Since the depth of considered images is 8 bits, n should be
chosen by considering both the largest number of additions
required to perform any of the approximate DCT methods
(i.e. 24 in Table 1) as well as the depth of the considered
images (i.e. 8); so in the worst case, n should be 8+24, or 32
bits. For image quality, previous sections have shown that a
NAB value of 4 generates a reasonable balance between
time/energy reductions and the resulting quality of the
compressed image (as measured by the PSNR).

Table 7 summarizes the results of using an InXA2 based
inexact adder to compress 256x256 images for the
approximate DCT JPEG compression methods discussed in

19

22

25

28

19

23

27

19

22

25

19

22

25

19

22

25

19

22

25

28

4 8 1632
19

22

25

28

SDCT
4 8 1632
BAS08

4 8 1632
BAS09

4 8 1632
BAS11
a = 0

4 8 1632
BAS11
a = 1

4 8 1632
BAS11
a = 2

4 8 1632
CB11

4 8 1632
BC12

4 8 1632
PEA12

4 8 1632
PEA14

A
M

A
1

A
M

A
2

A
M

A
3

A
M

A
4

In
XA

1
In

XA
2

In
XA

3

Lena Cameraman Boat Peppers

19

22

25

28

19

23

27

19

22

25

19

22

25

19

22

25

19

22

25

28

4 8 1632
19

22

25

28

SDCT
4 8 1632
BAS08

4 8 1632
BAS09

4 8 1632
BAS11
a = 0

4 8 1632
BAS11
a = 1

4 8 1632
BAS11
a = 2

4 8 1632
CB11

4 8 1632
BC12

4 8 1632
PEA12

4 8 1632
PEA14

A
M

A
1

A
M

A
2

A
M

A
3

A
M

A
4

In
XA

1
In

XA
2

In
XA

3

Lena Cameraman Boat Peppers

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2731770, IEEE
Transactions on Computers

9

this work. The four images used in this manuscript are Lena,
Cameraman, Boat and Peppers; again, the adder size is n=32
and the NAB value is 4.

The first column in Table 7 shows the ranking of the
approximate methods with respect to the reductions of
execution time/energy for the different approximate DCT
methods; in this case, the reduction depends also on the
number of additions a specific approximate DCT method
requires to calculate the DCT matrix of an 8x8 size block.
The next three columns show the average execution time
reduction (which is related to the delay reduction as reported
previously in Table 5 for the InXA2-based inexact adder), the
average energy reduction (as per (9)) and the average PSNR
(as averaged for the four considered images). The last
column ranks the approximate DCT methods according to
the generated quality of the compressed images (i.e. by the
average PSNRs in the fourth column).

Table 7 shows that on average the BC12 and PEA14
methods require the least execution time and energy to
compress an image compared to compressing an image using
an exact adder. However, with regards to the quality of the
picture, BC12 yields poor quality and it is ranked 9 (Table7).
As for the best PSNR, the approximate DCT method CB11
produces the highest value; however if both the rankings in
the first and fifth columns are equally considered, then
BAS09 is the best approximate method.
Table 7: Ranking and average metrics (reductions in execution time/energy

and PSNR) of approximate DCT methods for image compression.

Method Reduction
Rank

Average
Time

reduction
(%)

Average
Energy

reduction
(%)

Average
PSNR

Quality
Rank

SDCT [23] 9 22.54 23.60 22.76 3
BAS08 [25] 4 22.51 23.60 22.64 5
BAS09 [26] 4 22.51 23.60 22.97 2
BAS11 [27] a = 0 3 22.60 23.21 22.46 7
BAS11 [27] a = 1 4 22.51 23.60 22.61 6
BAS11 [27] a = 2 4 22.51 23.60 21.08 10
CB11 [28] 8 22.64 23.31 23.93 1
BC12 [29] 1 22.76 23.56 21.10 9
PEA12 [16] 9 22.54 23.60 20.68 4
PEA14 [17] 1 22.76 23.56 21.28 8

As for the visual impact of errors, Figure 9 illustrates the
compression of Lena using all considered approximate DCT
methods with a RC value of 10 (as the recommended RC
value by [17][25][26]) and a InXA2-based inexact adder; the
approximate DCT method CB11 confirms the ranking in the
fifth column of Table 7. The error analysis is provided in the
supplemental material.

VI. CONCLUSION
This paper has presented a new approach for compressing

images by approximate compression using the Discrete
Cosine Transform (DCT) algorithm. The proposed approach
consists of a 3-level framework by which initially a
multiplier-less DCT transformation (so involving only
additions and shift operations) is executed; this level is

followed by a high frequency component (coefficient)
filtering and computation using inexact adders. It has been
shown that using 8x8 image blocks each level contributes to
an approximation in the compression process, while still
generating at the end a very high quality image. This
manuscript has confirmed that the combined effects of these
three levels are well understood; simulation and error
analysis have shown a remarkable agreement in results for
image compression as an application of inexact computing.

Figure 9 Compression of Lena under considered approximate DCT methods
and using an InXA2-based inexact adder with RC = 10; (a) SDCT [23], (b)
BAS08 [25] , (c) BAS09 [26] , (d) BAS11 [27]a = 0, (e) BAS11 [27] a = 1,

(f) BAS11 [27]a = 2, (g) CB11 [28] , (h) BC12 [29], (i) PEA12 [16], (j)
PEA14 [17], (k) Exact DCT compression with RC=10, and (l) Original

uncompressed image.

As the proposed framework has been proved to be
effective for a DCT method combining approximation at all
three proposed levels, the following specific findings have
been found and confirmed in this manuscript by simulation
and error analysis.
• Among all approximate DCT methods, CB11 produces

the best quality compression (highest PSNR values)
when using exact 16 bits adders (Figure 1). Other image
manipulation quality measures (AD and MD) confirmed
the PSNR results. (Figures 2 and 3). Methods BAS08,
BAS11 with a=0 and BAS11 with a=1 are the next best
methods.

• Among all inexact adders discussed [14], it has been
found that InXA2 performs the best.

• When inexact adders are utilized to implement
approximate DCT JPEG compression, non-truncation
based methods produces better results than the
corresponding truncation schemes, especially when
considering higher NABs. (Figures 5 and 6).

• The results for the DCT computed by using inexact
adders are consistent when different images were used.
(Figures 7 and 8). In general acceptable compression can
be obtained with NAB values up to 4. Then it has been

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2731770, IEEE
Transactions on Computers

10

shown that the quality of the results decreases
substantially when larger NAB values are used.

• On average using 4 image benchmarks, the BC12 and
PEA14 methods take the least execution time and energy
to compress an image compared to compressing an
image using an exact adder. As for the best PSNR as
metric of image quality, the approximate DCT method
CB11 produces the highest value; however if both
reductions in execution time and energy are considered,
then BAS09 is the best approximate DCT method.

REFERENCES
[1] R. E. Blahut, Fast Algorithms for Digital Signal Processing. Reading,

MA: Addison-Wesley, 1985
[2] V. Britanak, P. Yip and K. R. Rao, Discrete Cosine and Sine

Transforms, New York: Academic, 2007
[3] Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for im-

ages,” Trans. IEICE, vol. E-71, no. 11, pp. 1095–1097, Nov. 1988.
[4] Yun and S. Lee, “On the fixed-point-error analysis of several fast DCT

algorithms,” IEEE Trans. Circuits Syst. Vid. Technol., vol. 3, pp. 27–41,
Feb. 1993.

[5] C. Hsu and J. Yao, “Comparative performance of fast cosine trans- form
with fixed-point roundoff error analysis,” IEEE Trans. Signal
Processing, vol. 42, pp. 1256–1259, May 1994.

[6] Jie Liang; Tran, T.D., "Fast multiplierless approximations of the DCT
with the lifting scheme," IEEE Transactions on Signal Processing,
vol.49, no.12, pp.3032-3044, Dec 2001.

[7] Y. Dote and S.J. Ovaska, “Industrial Applications of Soft Computing: A
Review,” Proc. IEEE, vol. 89, no. 9, pp. 1243-1265, Sept. 2001.

[8] K. V. Palem, “Energy Aware Computing through Probabilistic
Switching: A Study of Limits,” IEEE Trans. Computers, vol. 54, no. 9,
pp. 1123-1137, Sept. 2005.

[9] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in Proc. Design, Automat. Test Europe, 2010, pp. 957–
960.

[10] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol.
32,no. 1, pp. 124–137, Jan 2013.

[11] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of
approximate and probabilistic adders,” IEEE Transactions on
Computers, vol. 62, no. 9, pp. 1760–1771, 2013.

[12] H. Jiang, J. Han and F. Lombardi, “A Comparative Review and
Evaluation of Approximate Adders,” Proc. ACM/IEEE Great Lakes
Symposium on VLSI, pp. 343-348, Pittsburgh, May 2015.

[13] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate
xor/xnor-based Adders for Inexact Computing,” Proceedings of the
IEEE International Conference on Nanotechnology, pp. 690-693,
Beijing, August 2013.

[14] Haider A.F.Almurib, T. Nandha Kumar and F. Lombardi,” Inexact
Designs for Approximate Low Power Addition by Cell Replacement”
Proc. IEEE DATE, pp. 660-665, Dresden, March 2016.

[15] N. Banerjee, G. Karakonstantis, and K. Roy, “Process variation tolerant
low power DCT architecture,” in Proc. Design, Automat. Test Europe,
2007, pp. 1–6.

[16] U. S. Potluri, A. Madanayake, R. J. Cintra, F. M. Bayer, and N.
Rajapaksha, “Multiplier-free DCT approximations for RF multi-beam
digital aperture-array space imaging and directional sensing,” Meas. Sci.
Technol., vol. 23, no. 11, pp. 1–15, Nov. 2012.

[17] U. S. Potluri, A. Madanayake, R. J. Cintra, F. M. Bayer, S. Kulasekera,
and A. Edirisuriya, "Improved 8-Point Approximate DCT for Image and
Video Compression Requiring Only 14 Additions," IEEE Transactions
on Circuits and Systems I: Regular Papers, vol.61, no.6, pp.1727-1740,
2014.

[18] Merhav, N.; Vasudev, B., "A multiplication-free approximate algorithm
for the inverse discrete cosine transform," in Image Processing, 1999.
ICIP 99. Proceedings. 1999 International Conference on , vol.2, no.,
pp.759-763 vol.2, 24-28 Oct. 1999.

[19] C. Loeffler, A. Lightenberg, and G. Moschytz, “Practical fast 1-D DCT
algorithms with 11 multiplications,” Proc. IEEE ICASSP, vol. 2, pp.
988–991, Feb. 1989.

[20] P. Duhamel and H. H’Mida, “New S DCT algorithms suitable for VLSI
implementation,” in Proc. ICASSP, 1987, pp. 1805–1808.

[21] E. Feig and S. Winograd, “On the multiplicative complexity of discrete
cosine transform,” IEEE Trans. Inform. Theory, vol. 38, pp. 1387–1391,
July 1992.

[22] Lecuire, V.; Makkaoui, L.; Moureaux, J.-M., "Fast zonal DCT for
energy conservation in wireless image sensor networks," in Electronics
Letters , vol.48, no.2, pp.125-127, January 19 2012.

[23] T.I. Haweel, “A new square wave transform based on the DCT”, Signal
Processing, vol. 82, pp. 2309–2319, 2001.

[24] K. Lengwehasatit, A. Ortega, "Scalable variable complexity
approximate forward DCT," IEEE Transactions on Circuits and Systems
for Video Technology, , vol.14, no.11, pp.1236-1248, 2004.

[25] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “Low-complexity 8
x 8 transform for image compression,” Electron. Lett., vol. 44, no. 21,
pp. 1249–1250, 2008.

[26] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, "A fast 8×8
transform for image compression," 2009 International Conference on
Microelectronics (ICM), pp.74-77, 19-22 Dec. 2009.

[27] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A low-complexity
parametric transform for image compression,” in Proc. ISCAS, pp.
2145–2148. May 2011.

[28] R. J. Cintra and F. M. Bayer, “A DCT approximation for image
compression,” IEEE Signal Processing Letters, vol. 18, no. 10, pp. 579–
582, Oct. 2011.

[29] F. M. Bayer and R. J. Cintra, “DCT-like transform for image compres-
sion requires 14 additions only,” Electron. Lett., vol. 48, no. 15, pp.
919–921, 2012.

[30] Kaushal, V.; Garg, B.; Jaiswal, A.; Sharma, G.K., "Energy Aware
Computation Driven Approximate DCT Architecture for Image
Processing," in VLSI Design (VLSID), 2015 28th International
Conference on , vol., no., pp.357-362, 3-7 Jan. 2015

[31] S.Cotofana, C. Lageweg, and S. Vassiliadis, “Addition Related
Arithmetic Operations via Controlled Transport of Charge,” IEEE
Trans. Computers, vol. 54, no. 3, pp. 243-256, Mar. 2005

[32] Predictive Technology Model (PTM), http://ptm.asu.edu/.
[33] J,-F, Lin, Y,-T. Hwang, M.-H. Sheu, and C.-C. Ho,” A Novel High-

Speed and Energy Efficient 10-Transistor Full Adder Design” IEEE
Transactions on Circuits and Systems—I: Regular Papers, vol. 54, no. 5,
May 2007.

[34] Z. Pan and H. Bolouri, “High Speed Face Recognition Based on
Discrete Cosine Transforms and Neural Networks,” Tech. Rep., 1999,
Science and Technology Research Centre, University of Hertfordshire.

[35] Z. Pan, R. Adams, and H. Bolouri, “Image Recognition using discrete
cosine transforms as dimensionality reduction,” in Proc. IEEE—
EURASIP Workshop Nonlinear Signal and Image Process., 2001, pp.
149–154.

[36] J. Robinson and V. Kecman, “Combining support vector machine
learning with the discrete cosine transform in image compression,”
IEEE Trans. Neural Netw., vol. 14, pp. 950–958, 2003.

[37] G. Mandyam, N. Ahmed, and N. Magotra, “Lossless image compression
using the discrete cosine transform,” J. Vis. Commun. Image
Represent., vol. 8, no. 1, pp. 21–26, 1997.

