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ABSTRACT
In this work a power efficient approximate system design

methodology is introduced and its performance is demon-

strated by a 2D-DCT implementation on Spartan 3 FPGA.

The method is applicable to any system with arithmetic com-

putation regardless of their architecture, because it utilizes

the existing approximate arithmetic units. The novelty of

the proposed method is its system analysis approach starting

from the highest level and exploring through the sub-blocks

down to the basic arithmetic units. It first evaluates a given

system block diagram and sets the desired performance lim-

its of each processing block to achieve the desired ultimate

quality metric. Then, the arithmetic power consumption is

minimized by employing the appropriate arithmetic units

which are chosen by linear/non-linear programming with lin-

ear constraint solver. The tests on 2D-DCT implementation

show a power reduction of 8% for a 0.01 dB PSNR loss for

128×128 images, on the average.

Index Terms— Approximate computing, approximate

adders, low-power digital systems, DCT, JPEG encoder

1. INTRODUCTION

Growing demand on mobile computing brings power-related

problems along. In many applications, best quality is a low-

priority concern, when compared to execution speed and

power-efficiency. Approximate or only sufficiently-good re-

sults become acceptable for mobile devices because many

applications are erroneous by nature since the collected data

is noisy or processing algorithms are not exact. Moreover,

quality can as well be traded off for power saving. The trade-

off between power and accuracy leads designers to find the

system that minimizes the power consumption, while still

maintaining a desired quality performance.

A designer may choose and implement a signal process-

ing algorithm only accurate enough to meet the performance

criteria. This implementable algorithm is usually an approxi-

mate and low-complexity processing algorithm, which functi-

nally resembles to the original algorithm. Good approximate

algorithms such as [1] for image processing and [2] for wire-

less communication can be found. However, the approximate

correspondents cannot be adjusted to provide different power

or quality levels. In other words, this type of approximate im-

plementations are inflexible towards changing environmental

conditions and user requirements, in terms of power and qual-

ity.

A systematic design approach to optimize a system for re-

quired quality performance is required. This work proposes

such method, which does not require design of a new imple-

mentable approximate algorithm. Instead, the method effi-

ciently utilizes special arithmetic blocks with various approx-

imation levels. Approximate adder and multiplier circuits

have lower power consumption than exact arithmetic circuits.

For example, with decreasing supply voltage, the power con-

sumption of the electronic circuits is reduced at the cost of

reduced accuracy [3]. Another approach is gate level or tran-

sistor level synthesizing of circuits. An overview of approxi-

mate arithmetic circuits is given in [4]. This work aims to se-

lect and employ approximate units in order to optimally meet

the performance criteria of the system.

By systematic utilization of approximate computing units,

maximum power savings are obtained. Moreover, the pro-

posed approximate system design methodology can be im-

plemented with any platform. The method investigates the

overall system from the highest level down to the arithmetic

units to determine the sufficient output quality at each block.

Therefore, the method does not increase the algorithm or ar-

chitecture design time by introducing a new block diagram.

In the final phase of the method, the appropriate approximate

computing units are employed in the corresponding system

blocks.

The paper is organized as follows. The system design

methodology is introduced in Section 2. In Section 3, the

method is elaborated on a 2D-DCT implementation for a

JPEG encoder. The JPEG encoding application is a simple

yet sufficient example to demonstrate the methodology, be-

cause the application satisfies the two motivations: i. JPEG

encoding is lossy by nature so there is no need for exact com-

putation, ii. the PSNR of the output picture can be traded-off

for power saving. The demonstration and results are also

given in Section 3. The paper is concluded in Section 4.
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Fig. 1. A system’s block diagram

2. POWER EFFICIENT APPROXIMATE SYSTEM
DESIGN METHODOLOGY

A system design methodology that minimizes the total arith-

metic computation power by choosing the appropriate arith-

metic units among a set of available approximate and exact

ones is proposed. While doing that, the designed system still

maintains a certain performance which can be defined by a

quality metric. The ultimate quality metric varies according

to the application domain. Among many others, it can be rep-

resented as PSNR, SNR, error rate, MSE (mean squared er-

ror) ROC (receiver operating characteristic) curve, accuracy,

precision etc. This method is independent from the perfor-

mance representation because it links the performance with

the arithmetic computation error and operates on arithmetic

units.

To explain this linking method, a generic signal process-

ing system’s block diagram is given in Figure 1, where the ul-

timate quality performance is a function of individual blocks’

performance. As we zoom into any block in the system, we

realize that the blocks are composed of sub-blocks and the

system components can be zoomed into computation units:

multipliers and adders. This zooming-into operation is re-

flected to the design methodology as a system-to-blocks ap-

proach, which is summarized by Figure 2. The system-to-

blocks approach works as follows. First, forward path is anal-

ysed to evaluate the performance limits of individual blocks.

This forward analysis returns two valuable information: i. the

performance metrics for blocks, ii. the relationship between

sub-blocks in terms of ultimate performance goal. The first

step is executed by processing a known signal such as an im-

pulse. The output of each block is recorded and the preci-

sion of the system output is represented as a function of the

block output. The purpose of this step is to convert the de-

sired ultimate design goal of the system into error measures

for blocks. As the method will be elaborated on a JPEG en-

coder example, the ultimate design goal of JPEG encoding

can me measured by PSNR. However, the performance of

its blocks such as DCT and quantization can be expressed

as MSE. Moreover, each block has different contribution in

the ultimate performance metric. With this step, the system is

divided into blocks.

The second step is to determine the sensitivity of blocks

for arithmetic calculation errors. This step works on blocks

and tries to reach arithmetic sub-blocks such as adders and

multipliers. The block under investigation is sensitive to the

Fig. 2. System-to-blocks approach to minimize the total

power consumption of arithmetic units, for a target perfor-

mance

arithmetic calculation errors. In this step, both this sensitivity

and the correlation between arithmetic calculation units are

obtained. It is assumed that each arithmetic unit i adds zero

mean white Gaussian noise with a known standard deviation

σi to its output. A multiply-accumulate (MACC) block of the

system in Figure 1 is investigated as an example. The output

SNR, SNRo is given as

SNRo =
√
n

μ2σ
2
1 + μ1σ

2
2√

σ2
1 + σ2

2

√
σ2
1σ

2
2 + (σ2

m + σ2
a)(σ

2
1 + σ2

2)
(1)

where, n is the number of iterations and σa and σm are stan-

dard deviation of error added by the adder and the multiplier,

respectively. In this example, in order to increase the out-

put SNR, (σ2
m + σ2

a) should be decreased. In other words,

depending on the target SNR, this MACC can tolerate some

arithmetic error, which can be quantified by (1).

The first and the second steps focus on the error metrics,

but they do not contain any information about power con-

sumption. Therefore, the next step is organized to link the

performance of the arithmetic units with their power con-

sumption. Although power consumption of an arithmetic

unit increases with its accuracy in general, the exact power-

accuracy relationship may vary depending on the implemen-

tation platform. A linear or non-linear model for power

consumption of approximate arithmetic units is employed in

the optimization algorithm. Alternatively, exact values for the

power consumption can as well be utilized, but then a brute-

force optimization would be required. Therefore, using exact

power consumption values in the optimization algorithm is

costly. Moreover, it is unnecessary because after complete

system implementation, the power consumption of the units

will slightly change depending on the routing. Therefore,

using the exact power consumption values instead of power

consumption model does not improve the optimization.

The fourth step is combining the performance metrics and

power estimations obtained in the previous steps and forming
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Fig. 3. JPEG encoding and decoding

an optimization problem. The total power consumption of the

arithmetic units is optimized by solving a linear/non-linear

programming problem with linear constraints. As stated

in step 3, the optimization function -total power consump-

tion, can be a linear or non-linear function of arithmetic unit

error. The optimization problem is formulated as follows.

Minimize:
∑N

i=1 P (X̂i)
2

Subject to: BX̂ ≤ b

X̂ ≥ LB

X̂ ≤ UB

X̂i ∈ R , 1 ≤ i ≤ N

where, Xi is the error rate of the arithmetic unit i. P (X)
is the (estimated) power consumption, UB and LB are the

upper and lower bounds for the error rate, respectively. LBi

is 0, if we are allowed to use exact adders and multipliers.

UBi is determined by the available approximate arithmetic

units. P (X) formulation, LB and UB are obtained in step 3.

Constraint matrix B and target error rate b are formed accord-

ing to the forward analysis in step 1 and 2. Moreover, BX̂
should remain lower than the target error rate. The algorithm

returns the optimum error rates for N arithmetic units.

The constraint matrix B is an N ×M matrix and it repre-

sents the link between the M block outputs and N arithmetic

units in the block. In the MACC example, X̂ is a 2×1 vector:

X̂ = [eaem]′, where ea and em are the additive mean errors of

the approximate adder and multiplier, respectively. The adder

is run for L times in the accumulator so the error of the adder

will be added to the result by L times, whereas the multiplier

error is included only once. Therefore, the constraint matrix

for this block is B = [L1].

The target error rate b is an M × 1 vector. The error defi-

nitions of the block outputs must be consistent with the arith-

metic unit error definitions. Therefore, an error metric con-

version may be necessary, depending on the application. In

the next section, an example will be demonstrated on JPEG

encoder, where the ultimate error metric is PSNR and the ap-

proximate arithmetic units are classified by their mean abso-

lute error.

3. JPEG ENCODER WITH APPROXIMATE ADDERS

The system design approach is evaluated in a JPEG encoder.

Block diagram of JPEG encoding and decoding are given in

Figure 3. 8×8 blocks of the image to be encoded is fed to

Fig. 4. 16-adder DCT signal flow diagram

2 dimensional DCT. The ouput of the DCT is quantized and

encoded with entropy encoder according to the JPEG stan-

dard [5]. Image-processing related performance expectations

are also written on the output of the blocks. Ultimate perfor-

mance goals of a JPEG encoder are PSNR and Compression

ratio. Compression ratio is adjusted by the entropy encoder;

parameter R defines the number of AC components to be en-

coded. Effect of R on PSNR will be revealed using Lena

picture after implementation in Section 3.5.

Before optimizing the blocks of the system, an architec-

ture should be selected. For this work, a multiplierless ap-

proximate DCT architecture is selected. The details are ex-

plained below.

3.1. Multiplierless DCTs for JPEG encoding

Exact calculation of a two dimensional DCT for an 8 × 8
matrix g is given as

Gu,v = α(u)α(v) (2)

×
7∑

x=0

7∑
y=0

gx,ycos

(
(2x+ 1)uπ

16

)
cos

(
(2y + 1)vπ

16

)

α(x) =

{
1/
√
2 x = 0

1 otherwise.
(3)

In order to reduce complexity of DCT, this transform is con-

verted into a matrix multiplication, in many low-complexity

DCT methods. The transform with matrix multiplication is

G = C · g (4)

where C is the transformation matrix. C can be approxi-

mately decomposed into a diagonal matrix D and a low com-

plexity matrix T as

C = D ·T. (5)

Signed DCT (SDCT) presented in [6] arranges T in a way

that it does not require multiplication operations nor tran-

scendental expressions because its diagonal matrix and low
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complexity matrix can be implemented with only shift oper-

ations. Bouguezel-Ahmad-Swamy Approximate DCT -will

be refered as BAS-2008, [7] proposes a similar transforma-

tion, providing a higher PSNR and reduced complexity when

compared to SDCT. Parametric form of BAS-2008 transform

is proposed in BAS-2011 [8]. Transformation matrix of BAS-

2011 contains a parameter a, whose value determines the shift

operations to be processed. When the parameter a is selected

as 0, then the BAS-2011 transform reaches its lowest com-

plexity. For a is 0, the transformation is given with the low

complexity matrix

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 1 0 0 0 0 −1 0
1 0 0 −1 −1 0 0 1
1 0 0 0 0 0 0 −1
1 −1 −1 1 1 −1 −1 1
0 0 0 1 −1 0 0 0
0 −1 1 0 0 1 −1 0
0 0 1 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the diagonal of D

[1/
√
8, 1/2, 1/2, 1/

√
2, 1/

√
8, 1/

√
2, 1/2, 1/2].

This transformation requires 16 adders, as the signal flow di-

agram shows in Figure 4.

3.2. Low power approximate JPEG encoding

Within certain limits, 16 adders of the DCT architecture in

BAS-2011 can be selected from approximate adders. There-

fore, X̂ is a 16 × 1 vector and it returns the optimum toler-

able error values for the 16 approximate adders. The rela-

tion between the adders is transformed to the constraint ma-

trix B8×16, as follows:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1

0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The target vector b is calculated for the target PSNR as fol-

lows. First PSNR is converted into MSE using (6)

MSE =
2552

10

⎛
⎝PSNR

10

⎞
⎠
. (6)

This target MSE is multiplied with the quantization matrix, in

order to find the MSE of the DCT block. The constraint ma-

trix is constructed for 1D-DCT. When it is executed for two

times on the same input data, the constraints will be squared.

However, the optimization problem is formed for a linear con-

straint matrix, so the diagonal of MSE matrix is used to de-

termine the b vector. Since the approximate adder errors are

given in percentage -as will be explained below, b vector is

also converted to percentage error in [0-255] range. This way,

the target percentage error of one DCT block is found.

The design method is applied in two modes: high quality
- HQ mode and power saving - PS mode. The difference

between the modes is the amount of tolerable noise. The HQ

mode aims to minimize the power consumption for the best

quality, which is at most 0.05 dB lower than the exact JPEG

encoder. The PS mode on the other hand aims a power saving

of at least 20%, allowing an PSNR loss of 1 dB. Choosing the

PSNR values accordingly, b vector for both modes are found.

Next, the adders will be introduced so that the power model

inside the objective function
∑N=16

i=1 P (X̂i)
2 and the upper

bound UB can be determined.

3.3. Approximate adders used in this work

Operation of an infinite resolution exact adder is given as

y = a + b. If the adder is approximate, then the result of

approximate addition of a and b will be ŷa+b and the MSE of

the approximate adder is defined as

Relative MSEapp =
1

(Nmax + 1)2

Nmax∑
a=0

Nmax∑
b=0

ŷa+b − (a+ b),

(7)

where the the maximum number that can be represented in

that approximate adder is Nmax.

Five different 13-bit approximate ripple-carry adders are

used in this work. They will be abbreviated from App1 to

App5, where App1 has the lowest and App5 has the high-

est error rate. Ripple carry adders are composed of 1-bit full

adders for high order bits and approximate 1-bit adders for

low-order bits. Approximate 1-bit adders are obtained by re-

ducing the complexity of full adder: i.e. by employing an OR

gate instead of an EXOR gate. The approximate adders can be

varied, however design and implementation of approximate

adders are beyond this work’s scope. The cost of the exact

adder is 40 LUT in Xilinx Spartan 6 FPGA and occupies 624

transistors in a conventional design. In Table 1, relative MSE

of the approximate adders are given together with their area

occupation. Logic power is proportional with the area and it

also depends on the signal toggle rate. Therefore, the power

consumption of these adders will change with the applica-

tion, in proportion with their size in table. The optimization

method and decision mechanism can be used for any imple-

mentation platform, if the power consumption estimations of

discrete approximate units (adders and multipliers) are pro-

vided. Therefore, exact adder and five approximate adders

are implemented on FGPA (Xilinx - xc3s500e-4cp132c) and

their power consumption are plotted versus their error in Fig-

ure 5. In the figure, both a linear fit and an exponential fit

are shown. Another point, an adder with very high error rate

and 0 power consumption is included for the sake of curve

fitting. A linear power model is used to estimate the power
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App1 App2 App3 App4 App5

Relative

MSE[%]

0.0058 0.0185 0.0637 0.2737 3.8109

# FPGA

LUTs

38 37 35 34 32

# Tran-

sistors

558 536 488 462 432

Table 1. Area utilization and relative MSE of approximate

adders

Fig. 5. Linear and exponential fits for the power consumption

of different approximate adders.

consumption of the approximate adders as given in (8)

P = p1 ×X + p2 (8)

with p1 = -0.0001242 and p2 = 0.0009436. So, the objective

function is obtained. The lower bound LB is a zero vector,

because an exact adder can be used in the design. According

to the values in Table 1, the upper bound is

UB(i) = emax, 1 ≤ i ≤ N,

where emax is 3.8109 for this set of approximate adders.

3.4. DCT design on FPGA

2D-DCT module is implemented on Xilinx Spartan 3 xcs500e-

4fg320 FPGA with balanced design goal. ”Keep hierarchy”

mode is used in the synthesis level, in order to provide a fair

comparison. The block diagram of 2D-DCT given in Figure

6 contains four blocks, as explained below.

The NxN image is processed in 8×8 sections. The AD-
DRESS GENERATOR contains a simple 3 bit counter to

hold the row or column address of the 8×8 image section un-

der processing. By the DCT blocks, BAS2011 transform ma-

trix is implemented in a three-stage manner as illustrated in

Figure 4. The DCT module is organized in a way that the 16

adders of different branches can be altered separately. DCT1
and DCT2 perform 1D-DCT on x and y axis, respectively.

First stage of 2D-DCT is performed by DCT1 and its out-

put is mapped as a matrix in the RAM BLOCK, which is

Fig. 6. 2D-DCT block diagram

64 bits by 8 bits in size. DCT2 takes a row vector from the

matrix stored in RAM block, from left to right. Its first and

last input is the leftmost and the rightmost row vector value,

respectively.

3.5. Implementation results

The DCT system is implemented with different adder settings.

The blocks and the interconnections between the blocks are

kept the same in the compared designs. The 16 adders in

the DCT block are altered according to the power efficient

approximate system design methodology.

Four different 128×128 images (Baboon, Barbara, Cam-

eraman and Lena) are fed into the DCT system on FPGA.

Then, transformed image is quantized and entropy encoded

using Matlab. The JPEG code is then encoded on PC, using

the inverse BAS-2011 transformation matrix for inverse DCT.

The PSNR is calculated on the decoded image. Xilinx XPA

tool is used to estimate the power consumption of the 2D-

DCT system. The logic power consumption of 2D-DCT and

PSNR of four 128×128 images are reported here.

For comparison, DCT FPGA implementation with three

settings are used: i. with all exact adders, ii. with only one

type of approximate adder and iii. with selected approximate

adders according to the proposed method. Power consump-

tion and PSNR of three settings are compared. The first set-

ting will be named exact DCT, because exact adders are used

in the implementation. In the second setting, the same ap-

proximate adder is used on each branch of the DCT module.

Two approximate adders are evaluated in this setting: approx-

imate adder 1 and 4 with a Relative MSE of 0.0058% and

0.2737%, respectively. These set ups will be called App.1

and App.4.

In the third setting, the adders are chosen among a bunch

of approximate adders introduced in Section 3.3, according to

the approximate system design methodology which is applied

to JPEG encoding in Section 3.2.

In Figure 7, the PSNR of Lena is plotted as a function

of R. The exact DCT and HQ approximate implementation

return almost the same PSNR value, as targeted. In the PS

mode, 1 dB PSNR loss was tolerated and the results show that

there is an average and maximum difference of 0.82 dB and

1.18 dB is obtained, respectively. When approximate adder

1 is used at each layer, the PSNR stars to decline when com-
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Power

[mW]

Power

sav-

ing[%]

PSNR

[dB]

%

PSNR

loss

App.1

Baboon 1.16 10.7692 27.7615 0.2651

Barbara 1.12 11.1111 29.0098 0.3202

Cameraman 1.07 12.2651 29.7574 0.2765

Lena 1.12 12.5 26.6211 7.3253

Average 1.1175 11.6688 28.2875 2.0468

App.4

Baboon 0.73 43.8462 23.5835 15.2748

Barbara 0.68 46.0317 23.9752 17.6195

Cameraman 0.57 53.2787 21.1991 28.9572

Lena 0.65 49.2188 23.9286 16.6985

Average 0.6575 48.0939 23.1716 19.5125

Proposed

HQ

Baboon 1.19 8.4615 27.8282 0.0255

Barbara 1.16 7.9365 29.0921 0.0375

Cameraman 1.13 7.377 29.8174 0.0754

Lena 1.18 7.8125 28.7208 0.0157

Average 1.1650 7.8969 28.8644 0.0385

PS

Baboon 1 23.0769 26.7401 3.9346

Barbara 0.94 25.3968 29.0543 0.1673

Cameraman 0.9 26.2295 28.3885 4.864

Lena 0.95 25.7813 27.6095 3.8844

Average 0.9475 25.1211 27.9481 3.2126

Table 2. Power saving and PSNR loss due to approximate

computing

pared to exact DCT result. Using approximate adder 4 drasti-

cally lowers the performance of the DCT.

The decoded image Lena is given in Figure 8. The power

saving results with the implemented PSNR loss are summa-

rized in Table 2. Let’s compare the App.1 DCT with HQ DCT.

Power saving of App.1 DCT is 1.5 times of HQ DCT’s power

saving. However, for this increase in power saving, 66 times

more PSNR will be lost. A similar comparison can be made

between App.4 DCT and PS DCT. Although App.4 DCT dou-

bles the power saving provided by PS DCT, its PSNR is 6

times worse than the PS DCT’s. In conclusion, selecting the

approximate adders by the proposed design methodology pro-

vides more power saving than a system which is built with

identical approximate arithmetic units.

4. CONCLUSION

In this paper, a power efficient approximate system design

method is introduced and demonstrated on a JPEG encoder.

The aim of the design methodology is to minimize the com-

putation power, while the ultimate performance criteria of the

system stays within the target limits. Regardless of the imple-

mentation platform, the method can be applied on any digital

signal processing system, because it utilizes the approximate

arithmetic units available for the system. The JPEG encoder

which is built using this method is tested with 4 different im-

ages. As a result, 7.9% average power saving is obtained with

Fig. 7. Implementation results as a function of R

only 0.02% PSNR loss. Moreover, by changing the PSNR

tolerance to 1% level, 25.12% power saving is obtained.
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